
6
Programming Ideas

Adding Numbers

This section is about how to think and talk about the process of making a
program. I developed the general approach while introducing elementary
school children to computation. But the ideas that are good for children are
good for other beginners, and perhaps for some experienced programmers.
Variants of the example used here have been used with seventh graders,
with college undergraduates, and with teachers. They illustrate a style of
programming project, a style of programming language, and a metalan-
guage or style of talking about programming as well as doing it. There is
no suggestion that this style is uniquely correct. My message is on a different
plane; I mean to assert the importance of paying more attention in the
pedagogy of computation to such questions of style.

The problem is very recursive. I want to talk about programming, but
I need to invent a way to talk about talking about programming! One way
would be to give extracts from real dialog. But this is too cumbersome.
Instead I shall condense real dialog into a kind of monolog about developing
a program. The monolog gives an impression of one way I know how to
think about developing a program. There is nothing very original about this
way of thinking. The point I am making is about the technique of getting
it out of our heads and into the pedagogy of teaching beginners.

In the discussion I carry with me a computational model in which there
are little people, agents, experts in the computer that I can call on to help
in thinking about the flow of my program, and, thus, in debugging my
program. Keeping this model in mind helps me articulate what jobs need
to be done and what procedures I need to get those jobs done. It also helps
me figure out how these procedures interact with one another, how they
report back what they have found out or constructed. Furthermore, as I
debug my program and its individual procedures I talk again to these little
people and get them to act out each procedure step by step, instruction by
instruction.

The Project

We pretend the computer is ignorant of arithmetic and create an operation
that will add two integers. No Logo arithmetic operations may be used. An
apparent exception might seem to be EQUALP (=), but it is used to compare

By Cynthia Solomon.

A D D I N G N U M B E R S 259

whether two Logo words or letters are the same. (It is an identity operator.)
So + *, /, and are prohibited. Two implications
arise from posing this project. One is that an addition operation can be
decomposed into smaller procedures. The other is that numbers are really
just words asked to play special roles.

This project generates interesting discussions. It really frees one's
thinking about numbers and operations and primitiveness. It is true that
arithmetic is a very necessary part of any computer's hardware, but the
hardware is made up of "logical units" that are based on the same ideas we
will investigate. How do computers really add? It's in their hardware. It's
built into the system. It's hardwired. Is addition "hardwired" into our sys-
tem? Are we like computers and so if a wire is loose we can't do it? What
about addition among children? Is it really a built-in capacity, or are there
pieces of knowledge that are acquired? Maybe we are so familiar with
addition that we forget its components. In fact, addition must rely on lots
of procedures.

Let's look at this project. Try to situate this particular task into a famil-
iar environment. We have to imagine that there are no arithmetic operators
available to us and that there are no arithmetic experts already existing in
Logo. We want to make up an addition operation so that we can say

and the computer will say

Yes, addition is a familiar operation and it's easy for us to hand-simulate its
job. But what if we had to tell a little person in the computer how to add?
Where do we start? We might ask ourselves if we know of a similar experi-
ence. What we have to do is "teach the computer" to add—just as we might
teach a person! Well, now, teachers teach kids to add; we were once those
kids. How did we learn—can we give ourselves some tips? (But I thought
it was hardwired and teacher just . . .)

At this point in past discussions two suggestions emerge. Teachers say
we have to teach the computer the "number facts" and computerists say
we have to build a 10 10 table. Great, I say, a beginning. I ask teachers
how we teach the number facts and what are they and how many of them
there are. I ask computerists if a 10 X 10 table is large enough and how we
organize it. The teachers will face these issues too. After all, making a table
is a way of "teaching" number facts.

What kind of table and what are number facts? A table of the sums of
the first 100 numbers is very limited, and building a larger table is still very
limited. Is that what I have in my head? Isn't there a key idea or two that
I could build on without exhausting the computer's memory?

Do children learn "number facts" like 16 + 20 = 36 as a primitive
notion, or is there a more fundamental idea underlying it all? What do kids
learn about numbers? They learn their relationship to each other. They
learn to order them. Sesame Street teaches kids to count from 1 to 20. Kids
learn to recognize the digits and their order. They learn that one is the
name of 1 and eleven is the name of 11 and one hundred eleven is the name
of 111. They learn that 11 is different from 2; they learn that 10 has been
added to 1. But there is another way of discussing that change. Let's say 1

260 P R O G R A M M I N G I D E A S

is a special word. We can create a new word by putting it together with
another. So is or eleven. Concatenating is a way of chang-
ing numbers.

Let's return to learning to recognize digits and ordering them. That
indeed is what we have to tell the computer and build upon. You might say
we want to teach the computer to count. On the other hand, it does us no
good to see the computer spew out numbers from 1 to 500. We want the
computer to know how to count. Think of what's involved in counting. How
many symbols are there? In one sense there are ten, 0 1 2 3 4 5 6 7 8 9; but
there are many constructions like 13 or 444; then there are also funny
changes such as from 9 to 10, from 19 to 20, from 29 to 30, and so forth.

We want to teach the computer that 7 comes after 6 and 10 follows 9
and so on. Some of it is tricky. But look, the only elements used in a base-10
number system are 0 1 2 3 4 5 6 7 8 9 . If kids learn how to use those ten
symbols in thousands of different ways, surely we can teach the computer.
There must be some rules that specify what to do to produce the "next
number in sequence."

That's what we have to do. That is our plan of attack. Tell the computer
what the basic elements (our data base) are. Then develop rules of behavior
so that we can make the computer give us our number plus 1, that is, the
next number. If the computer can do that, it knows how to count.

What is knowing how to count? Here's a computerist model: There is
"in the head" a collection of little people, experts capable of doing a whole
bunch of things like spewing numbers out, but also capable of conceiving
questions like what comes after this or before that. The computer, like
children, learns to recognize the digits, how to order them, and then how
to use them to make other numbers.

Okay, let's make a procedure that knows about digits. For example, if
it receives the input 3, it will output 4. It will add 1 (in some mysterious way)
to its input.

We Make

There are a couple of ways (at least) to do this. People who suggested
"teaching number facts" or making tables, of course, had the right idea.
There are different ways of constructing tables. For example:

=

=

=

=

=

=

=

=

=

=

A D D I N G N U M B E R S 261

We can also look at the ordered list of digits [0 1 2 3 4 5 6 7 8 9] as another
representation that has the same effect if we have a type of operation.

NEXT will output the next element in the list after the one specified.

Why do I suggest this way? It is a more general method. This process will
work for any base; all that needs to be changed are the elements of the list!

We Design

 must supply with a word. will then send the word out as
its answer. From the example of at work, we see that is given
two inputs, a word like and a list of words. tells its helpers to look
for the word in the list. They send back the word following it in the list.

If : doesn't match with : 's first word, one of 's helpers just
crosses the first word off the list and turns the job over to someone else.

Check this procedure out.

Notice there is a potential bug. What if : is not in : Let's remember
the bug, but postpone dealing with it for the moment.

Let's try now. Give it a thorough testing. You could exhaustively
try each digit because there are only ten. Another strategy is to choose
extremes like 0 and 9.

2

262 PROGRAMMING I D E A S

It's logical that there is a bug. After all, is the last element of the list. So
there is more work to be done; we have to teach that

 will work on any number that doesn't end in if we make one
small change! Look, all numbers not ending in 9 behave like digits when
you add 1 to them.

The only digit that changes is the so merely makes up a new
word by replacing with Let 's be op-
portunistic—seize the chance, change and call its input

Now we trace through this procedure using the little person metaphor.
As a reminder, I draw a stick figure.

(So we thought was only good for nine inputs. Suddenly we see it's
good for how many—millions? infinitely many? nine-tenths of all the num-
bers?)

Now works on all numbers that don't end in Would it work if
we pretend 10 is a digit and add it to the list given —that is,

 Then

1 0

A D D I N G N U M B E R S 263

110

instead of 2 0!
So putting 10 in the list did not really help. This nines bug is not cured

so quickly. This issue is really about what to do with the "carry" when
adding numbers. If a number is then the answer is but if a number
ends in we want to carry one to add it to the next digit of the number.
Now, how can wishful thinking help? How can we make use of what we just
did? Let's see how we do it. Try 17 9:

We turn the 9 into a 0 and add the 1 to the 17. We get 18 . . . and don't
forget to glue the 18 and the 0 back together.

Make a special check for being Then replace the
 by and to

So

\ o

A

0]

264 PROGRAMMING I D E A S

We can fix this bug by making another special test

as the first instruction in A DDI. Now

180

and

1 0 0 0 0

What luck! Perhaps you thought that the first on the left would give
trouble. But we lucked out (or were super smart!).

Adding Two Numbers

Now that we can add 1 to any number, we can really add any number to
any other.

It's simple if we think of the kinds of procedures we know about. Some
procedures operate on their inputs until they are empty or until a thing has
been found. Other procedures do a job for a specified number of times. We
can think of the next stage in our project as adding one to an input for a
declared number of times.

Typically, counter procedures count down to 0 and then they know the job
is done. But they use subtraction, and we are trying to invent addition
without using any of Logo's built-in arithmetic operations. We can teach the
computer to subtract one.

If we had a procedure, then

Making a procedure for subtracting 1 is really easy because we have
already thrashed through the difficulties encountered in How can we
use what we know about to describe a Let's look at a concrete
situation.

8

0

A D D I N G N U M B E R S 265

Can 1 use
If we want NEXT 1 [. . .] to be 0, how should the list be ordered?

If we leave the list as then would output It
should output Reverse the list. Then
0] outputs 0.

So

Try
It works! As long as the numbers don't end in what? Nine is okay. Why?

The digit that is the position of the list given to is the problem
digit. That is when a "carry" or a "borrow" takes place. So 1 must take
special measures when

Now works but very slowly and sometimes it needs too many people
to complete the job. Look, requires little peo-
ple.

Is there a shortcut? Yes. Let's treat the numbers as words and add the
 digit of each number to until : and : have been added

together.

This is ideal but won't work very often. Do you know when it works?

but

2 1 8

The carry bug has to be dealt with. How can tell if there is a carry?
carry means that will send back two digits (1 and something). That
makes it easy. needs to test whether the result from is one or
two digits long. uses to help and now looks like:

266 P R O G R A M M I N G I D E A S

In some sense this project is completed. We have constructed an addition
operation, and it works on positive integers. There are many extensions we
could pursue. For example, handling negative numbers would probably
necessitate making a subtract operation.

EXTENSIONS

In discussing setting up the table at the start, I mentioned the possibil-
ity of generalizing this scheme so that the operation would add numbers of
other bases. What about fractions or decimals? But what about looking at
a more general question? There are many arithmetic operations like

 There are also others, like the Logo operation that
outputs the length of a word or a list, and the predicates > (greater) and <
(less). Any of these could be implemented as extensions to this project.

Although we might be able to write procedures to perform many of
these operations, the process would probably be uncomfortably slow. This
leads to the question: Are there some arithmetic operations that we
couldn't define without special hardware or without special software? What
operations are primitive? Imagine writing or or or

. What would be required? Is the derivation too clumsy? The
answers to these questions will undoubtedly change as the contexts in
which they arise change.

PROGRAM LISTING

F I L L 2 6 7

Fill

FI LL is a program to fill in solid areas on the graphics screen.

Figure 1

To use F I L L , position the turtle inside the area you want to fill. Then type
the command F I L L with no inputs. The area the program will fill is
bounded by lines drawn with any pen.* For example, try this:

*If the screen dot at the turtle's position was already drawn with one of the pens, then
FILL treats that pen as the background color for filling. So if you have a filled-in area on the
screen, you can draw a picture within that area and fill the inside of the picture using another
color.

By Brian Harvey.

268 P R O G R A M M I N G I D E A S

to draw a solid, filled-in square. The instruction is necessary to
position the turtle inside the square, rather than on its edge, before using

Note: If you have a 16K Atari computer, you should use the number
 instead of in procedure

How It Works: Overview

Figure 2 shows a sort of eccentric doughnut with the turtle positioned
between the two circles, so that the doughnut shape will be filled. The
program begins by filling horizontally from the turtle's initial position, in
both directions (figure 3). It remembers how far it got, to set left and right
limits for what comes later. Then it starts moving up (figure 4), filling
horizontally at each level.

V

Figure 2

(J+j

Figure 3 Figure 4

But when a newly filled line extends beyond the previous line (as illustrated
by the left edge of the filled area in figure 4), the program also checks for
an unfilled space below the new horizontal stretch. If it finds one, it starts
filling downward in that new area (figure 5). This search for new areas works
from left to right on each line, so (figure 6) the program continues moving
downward below the inner hole until it reaches the bottom (figure 7).

 l

I I

Figure 5 Figure 6 Figure 7

F I L L 2 6 9

Then it starts moving up into the newly discovered area to the right of the
hole (figure 8), and when that area is filled, the program continues its
interrupted upward filling of the top area (figure 9). The final result is shown
in figure 10.

(2
Figure 8

Screen Coordinates and Turtle Steps

The graphics screen consists of about 15,000 small dots, in a rectangular
array of 96 rows and 160 columns. Logo draws lines on the screen by
"turning on" some of these dots. To fill an area, we must also turn on dots
in this array.*

When you use the command, the distance measured in "turtle
steps" is not the same as the number of screen dots (or pixels) through
which the turtle passes. There are two reasons for this difference. The first
reason is that the distance between two vertically adjacent pixels is greater
than the distance between two horizontally adjacent pixels. If Logo mea-
sured distances in pixels, squares would come out looking like tall rectan-
gles. Instead, Logo uses the aspect ratio (the ratio of a horizontal pixel
distance to a vertical pixel distance) as a scale factor for vertical turtle steps.
The second reason is that both vertical and horizontal turtle steps are scaled
by a factor of two, so that 100 turtle steps is a reasonable distance on the
screen.

The reason this scaling of distances is important for the FILL project
is that we're going to have to think in terms of pixels, not in terms of turtle
steps. Remember that the overall task of the program is to move along the
screen looking for the border of the region we want to fill. In other words,
the program must look at a position on the screen to see if that position is
in the background color. If so, the program should fill in that position and
move on to the next. Suppose we wrote the program in terms of turtle steps.
(We'd then use to move from one position to the next.)
Since a turtle step is smaller than the distance between pixels, two consecu-
tive turtle positions will often occupy the same pixel on the screen! After
filling in the first position, we'd move on to the next position and think we'd

*For more details about the screen array, see the Savepict and Loadpict project.

270 P R O G R A M M I N G I D E A S

hit the border, because the screen dot would no longer be in the back-
ground color.

The approach took in writing is to think about positions in terms
of screen pixel coordinates, rather than turtle coordinates. The top-level
procedure FILL computes the pixel coordinates corresponding to the tur-
tle's position, and those pixel coordinates are used as inputs to the lower-
level procedures which do the real work. Figure 11 shows the screen coor-
dinate system used in The origin of this system (the point with
horizontal and vertical coordinates zero) is in the top left corner of the
screen. (the horizontal coordinate) gets bigger as you move to the
right. YCOR (the vertical coordinate) gets bigger as you move down the
screen; compare this with Logo's turtle-step YCOR, which gets bigger as you
move up the screen.

x
y

Figure 11

Because FILL uses screen coordinates instead of turtle coordinates, we can't
use the usual Logo graphics procedures like or Instead, we
have to write our own tools for examining and modifying screen pixels. Two
important procedures in this project are which examines the
color of a pixel, and which fills in a pixel.

One final point about the screen array is that each byte of computer
memory contains the color information for four pixels. Logo's
procedure lets us look at an entire byte at a time, not just one pixel. There-
fore, the program is more efficient if we can design it to examine four pixels
at once. You'll see how we do that when we get to the description of the

 procedure.

Initialization

Procedures 1, and are invoked just once each time you
use FILL. They set up certain information that is needed throughout the
program. Here are the procedures, followed by a list of their important
variables.

F I L L 2 7 1

 The aspect ratio. This ratio is 0.8 unless you have changed it
by using Logo's . command. There is no direct way
for FILL to find out the current aspect ratio, so it simply
assumes a value of 0.8 unless you provide a different value in
the global variable named before you use
This information is used in the procedure FILL to help con-
vert the current turtle position into screen pixel coordinates.

 The turtle's current horizontal position, in pixels. Note that
the variable is different from the Logo procedure
named which operates in turtle steps. Note also that
the name is used for other variables in several sub-
procedures to hold local position information.

 The turtle's current vertical position, in pixels. The same
notes apply as for

 The pen we should use for filling. Since one of the possibili-
ties is to fill by erasing (setting pixels to the background
color), we don't use exactly the same numbers that Logo uses
for pens. Instead, Logo's pens 0 to 2 are represented in this
variable with the numbers 1 to 3, while the number 0 repre-
sents the background color. We use the background color if
the turtle is in penerase when you give the com-
mand. Representing the background as 0 and the three pens
as 1 to 3 is convenient in this program, because those num-
bers are the ones that are actually stored in the screen mem-
ory in the Atari computer.

 The pen number that is the background of the region we
should fill. This is not necessarily the background color of the
screen. When you give the command, uses sub-
procedure to find out whether the particular pixel
at the turtle's position is in the background color or in one
of the three pens. Whichever is true of that pixel, the corre-
sponding color is what we look for to determine the region
we're supposed to fill. The value of is coded like that of
PEN: 0 for background, 1 to 3 for the three pens.

 sets this variable to the value of multiplied
This has the effect of reproducing the value of four times
in a byte.* A memory byte that contains this number repre-
sents four consecutive BG-colored pixels.

 This is reproduced four times in a byte, and it represents
four consecutive PEN-colored pixels.

*If you understand how numbers are represented in binary in the computer's memory,
you'll want to know that 85 is 01010101 binary. Multiplying a two-bit code (the possible values
are 0 to 3) by this number has the desired effect of reproducing it four times in the eight-bit
byte. If you don't know about binary representation, don't worry about it.

272 P R O G R A M M I N G I D E A S

 local

Filling a Line

Here is the definition of I I

This procedure uses the same trick as to create local variables
and Although they're defined as inputs to these varia-
bles really get their values within FILL. LINE itself.

Most Logo procedures are either coinmands, which do something visi-
ble like move a turtle, or operations, which have no visible effect but
instead output a value, like the arithmetic operations. I I has both
an effect and an output. Its effect is to fill the line on which the turtle starts.
(Turn back to figure 3 to see FILL. at work.) Its output is a list of
coordinates, indicating how far to the left and right it was able to fill.

The turtle starts out somewhere in the middle of the area we want to
fill. To fill the line containing the turtle's position, we have to start from that
position and fill both to the left and to the right. I I invokes

 twice, first to fill toward the left and then to fill toward the right.
FILL. knows which direction to use because of its third input, which
is - 1 to fill leftward or l to fill rightward.

F I L L 273

Filling in One Direction

 does all of the actual filling in of dots in the entire program.
The other procedures simply figure out where to tell to go to
work.

Because of the importance of I put a lot of effort into trying
to make it fast. Unfortunately, the cost of speed is complexity. Let's start by
examining a version of that doesn't yet have all of the efficiency
features added.

 has three inputs. The first two are the horizontal (x) and vertical
(y) screen coordinates of the pixel at which we want to start filling. The
third input tells the direction in which to fill.*

The strategy of is this:

1. Look at a pixel to see if it's in our background color.!
2. If it's not in our background color, it is a border for the area we're

filling. Output the x coordinate of the last pixel we actually filled—
the one before this one.

3. If it is in our background color, fill it and move on to the next pixel
in the desired direction, left or right.

To implement this strategy, uses two subprocedures. The first,
, is a predicate that outputs if the pixel it examines is in something

other than the background color. The second subprocedure, DOT, fills in the
pixel at the coordinates you give it as inputs. We'll look at those procedures
later. For now, the important point is to understand how they're used by

Filling Vertically

We have seen how the FILL program fills one horizontal line, the one
containing the turtle's position. What remains is to fill more lines, above and
below that first one. This task is entrusted to

*The word delta is the name of a Greek letter (A) that is often used in mathematics to
represent a change in something. In this case, : DELTA is added to : XCOR each time a dot is
filled in. If : DE L TA is positive, the new x coordinate is to the right of the old one. If : DE L TA
is negative, the new coordinate is to the left.

f As explained earlier, this may or may not be the background color of the screen.

274 P R O G R A M M I N G I D E A S

The name indicates that it must fill both above and below the
line we've already filled. Just as invokes twice,

 invokes a subprocedure called . twice.
 you'll remember, is invoked by The input to

 is the output from This output is a list of three
numbers: the vertical (y) coordinate of the line we've filled, and the left-
most and rightmost horizontal (x) coordinates of the line.* See figure 12 for
a pictorial representation of this information.

t

r ^
^

Figure 12

 0 gives two inputs to . The first input is the range list.
The second input tells the direction (up or down) in which to fill.
This second input is either 1 or - 1 , just like the similar direction input to

Here is the definition of I

All it does is to invoke FI P1, with six inputs. The first three inputs are
the three members of the range list, except that the vertical coordinate is
offset by one. (The reason is this: the range list output by FI I con-
tains the vertical coordinate of the line it just filled. We now want to fill a
new line, just above or just below that line. The first input to FI P1 is
the vertical coordinate of the line we should fill next.) The fourth input to
FI P1 is the direction indicator, 1 or - 1 . The fifth and sixth inputs are
given as zero. They're really used as local variables within FI l

The Smart Procedure

 really contains all the geometric knowledge of this program.
 has to know how to fill an area above or below a given line. This

task would be very easy if areas were always pleasantly shaped. In fact,
though, the filling job may have to "double back" because of irregularities
in the area we're filling. This complication is illustrated in figures 4 and 5

*If you want to be picky, of course, what we've filled is a line segment, not a line.

F I L L

(reproduced here). In figure 4, we are filling upward. This process continues
straightforwardly until we get above the "hole" in the center of the region.
At that point, the program is able to extend the filled area farther to the
left. It then discovers a new, unfilled region below the new line. Figure 5
shows that the program has reversed its direction; it's filling downward to
take care of the area to the left of the central hole.

Figure 4 Figure 5

The strategy of FI L L . U P1 is quite complicated, but it's made up of two
kinds of parts: using FILL. RAY, and using Fl LL . UPl recursively.

1. Use FI LL . RAY to fill at the current vertical position.
2. Compare the horizontal extent of FI . RAY's work to the horizontal

extent of the previous line.
3. If we've gone farther on this line than on the previous line, invoke

 recursively to deal with the area newly exposed.
4. Also invoke FI L L . U P1 recursively to continue with the same region

we were already filling.

Since the procedure is complicated, we'll show its definition with the in-
struction lines numbered. In the discussion that follows we'll refer to partic-
ular lines by number.

[FILL.UPl : YCOR- : DELTA : IMEWL : LE FT (- : DE LTA) 1 0]

[FILL.UPl :YC0R+:DE LTA :NEWL :NEWR :DELTA 2 0]

[8] IF WORDP : NEWL [FILL.UPl :YC0R : NEWL : RI GHT : DELTA 4 0]

276 P R O G R A M M I N G I D E A S

Refer to figure 13 for a picture of what happens in 's work.
The solid horizontal line in that picture was filled earlier, either by

 or by the previous invocation of . The dashed horizon-
tal line above is the one that will be filled by the current invocation of

R E G I O N 2

h v
4

previously f i l led iine

R E G I O N 3

Figure 13

Here is a list of the variables used in FI . U P1.

 The vertical coordinate of the dashed line, the one being filled
by this invocation of I P1

 The leftmost horizontal coordinate of the solid line, the one
previously filled.

RIGHT The rightmost horizontal coordinate of the solid, previously
filled line.

 The direction indicator. Its value will be 1 if the new (dashed)
line is above the old (solid) line, or - 1 if the new line is below
the old line.

 The leftmost horizontal coordinate of the new (dashed) line.
 The rightmost horizontal coordinate of the new line.

Each invocation of FI . UP 1 actually fills only one line. This filling is
done by using twice, on lines 2 and 4 of the procedure. Line 2
fills to the left of : and line 4 fills to the right of : The variables

 and are given as values the x coordinates of the endpoints of the
newly filled line.

When we're filling vertically, the most obvious thing is that after filling
one line, we must continue filling vertically in the same direction. Referring
to figure 13, after filling the dashed line we must continue upward, filling
region 2 in the figure. (Of course, we don't know yet what the exact shape
of that region will be. In the figure, it's shown as extending straight up, but
the edges might really be curved.) This continuation in the same vertical
direction is done in line 5 of the procedure.

How do we know when to stop? The answer is that if on this level we
didn't manage to fill anything (because we ran into borders right away),
then we shouldn't continue to the next level up. That's why line 5 compares

 to : If they're equal, we didn't fill anything on this level.

F I L L 2 7 7

There are two possible cases of "doubling back": one if the newly filled
line extends farther to the left than the old line, and one if the new line
extends farther to the right. In figure 13, both of these situations have
arisen.

We know that the new line has extended farther to the left than the
old line if : NEWL is less than : LEFT. This is the situation at the transition
from figure 4 to figure 5, which we've discussed earlier. Line 3 of the
procedure checks for this situation. If the condition is met, then FI L L . U P l
is recursively invoked to fill what is labeled region 1 in figure 13.

Similarly, we must double back on the right (into region 3 of figure 13)
if : E is greater than : Line 6ofFILL takes care of this case.
An example of this situation is at the transition between figure 7 and figure
8 (reproduced here). In figures 6 and 7, the program was filling downward.
When the lower boundary of the region is reached, in figure 7, the program
doubles back and starts filling upward in figure 8.

By the way, the doubling back into region 1 happens before the continued
filling of region 2. But the doubling back into region 3 happens after region
2 is filled. That's because lines 3, 5, and 6 happen to be in the order they
are. If line 3 were moved below line 5, the program would always complete
one direction of filling before starting in the other direction.

There is one more complication in FI L L . U P1. The line that is filled in
lines 2 and 4 of the procedure extends to both sides of : the leftmost
end of the previously filled line. Suppose that a border is reached above the
old line, before its rightmost end. This situation is shown in figure 14. Since
we want to fill all of the area above the previously filled line, it's not enough
to fill the area above the dashed line in the figure. We must also fill what
is labeled as region 4.

Figure 6 Figure 7 Figure 8

another line which was

already visible

: LEFT : R IGHT

previously f i l led line

Figure 14

278 P R O G R A M M I N G I D E A S

How do we know when this situation arises? First of all, : must be
less than : Second, if we look to the right of : we must find
another patch of background color before reaching : This search is
conducted by which is used on line 7 of
outputs the empty list if it does not find a suitable background pixel. If it
does find one, outputs the x coordinate of that pixel. This coordi-
nate is the left edge of region 4. Line 8 of checks to see if
found a background pixel. If so, it invokes FILL.UPl once more to fill
region 4.

Examining a Screen Pixel

The real core of this program is the strategy FILL.UPl uses to explore the
nooks and crannies of irregular shapes. What remains for us to consider are
the utility procedures that actually manipulate individual pixels. For exam-
ple, relies on to find out whether a particular pixel is a
border of the area.

 compares the color* of a particular pixel with our background
color. It outputs if the two are different. That is, outputs
if the pixel it's examining is on an edge of the area we're filling.

 outputs the color status of a pixel. Remember that each byte
of screen memory contains this information for four pixels. So
must read a byte of screen memory and extract from that byte the particu-
lar pixel we're interested in.

 translates from the x and y coordinates of a pixel to the byte
address in screen memory that contains that pixel. If you want to know
about how these addresses are calculated, read the Savepict and Loadpict
project.

•Actually, not the color number, but the pen number, in the form discussed earlier in
the description of the PEN and BG variables.

F I L L 279

PIXEL extracts one pixel from a byte. It takes two inputs. The first input
is a byte of screen memory. The second input is a number from 0 to 3,
specifying which pixel we want within that byte.

Filling One Pixel

 uses the procedure to fill each pixel. takes the coordi-
nates of the pixel as inputs. Here it is.

 must change the color of one pixel in a byte, leaving the other
three pixels of that byte unchanged. Since Logo's command can
only change an entire byte of memory at once, has to combine the new
color of one pixel with the old colors of the three other pixels. Precisely how
to do this depends on which pixel in the byte we want to change, so
has a subprocedure for each possibility. These subprocedures are named

 through

Making More Efficient

Earlier we looked at a simplified version of which examines and
fills one pixel at a time. It's faster if we can examine an entire byte full of
pixels at once. Here is the modified which does that, along with
some new subprocedures.

280 P R O G R A M M I N G I D E A S

 can only examine a complete byte of four pixels if the pixel
it's ready to examine next is the first one in a byte. The predicate
outputs if that is the case. If not, does the same things it did
in the simpler version.

If is examines the entire byte containing the
pixel of interest. If that byte contains four pixels all in background color, we
can fill all four at once. The variable contains the byte value that
represents four background pixels.

If does find a byte full of background pixels, it uses
 to fill all four at once. then examines the next

byte to see if it, too, contains four background pixels. Once
reaches a byte that is not entirely background, it reverts to the use of

 to check individual pixels.

Finding Region 4

The procedure FIND.BG, which is used to detect the appearance of a fourth
region to fill, is very much like with two exceptions. First,
FIND.BG passes over nonbackground pixels and stops when it reaches a
background pixel. Second, FIND.BG just examines the pixels, whereas

 fills them also.

F I L L 281

PROGRAM LISTING

0 . 8]

0]

282 P R O G R A M M I N G I D E A S

Savepict and Loadpict

When you've drawn a complicated picture, it's useful to be able to save the
picture itself in a disk file, so that you can later restore it to the screen
without going through the procedures that drew the picture again. For
example, suppose you're writing a video adventure game in which charac-
ters in the story are drawn against a backdrop showing a forest, dungeon,
or whatever. The backdrop could be saved as a picture file and then loaded
onto the screen for each scene before drawing in the actors.

In this project, you'll see three different sets of Logo programs for
saving and loading pictures. The three versions differ in how fast they can
load a picture and also differ somewhat in flexibility. The last version, for
example, allows a small picture to be "stamped" on the screen in different
positions. One thing to learn from this project is how using different data
representations can affect the efficiency of a program.

There are two ways to approach this project. If you just want to use
these procedures as a tool to save and load pictures for some other project
of your own, you don't have to understand some of the details explained
here about how pictures are stored. On the other hand, by studying how
the project works, you can learn about the important idea of data represen-
tation.

Note: If you have a 16K Atari computer, you should use the number
 instead of in procedures and

 appears only in the third version of the project.) With a 16K
machine, you don't have a disk drive, but you could save pictures on cas-
sette.

By Brian Harvey.

S A V E P I C T AND L O A D P I C T 283

How a Picture Is Stored

In order to save and load pictures, we have to know something about how
a picture is represented in the Atari computer. In this project we are
concerned only with the pictures drawn with pens, not with the turtle
shapes. The lines you draw are represented as a pattern of dots (called pixels)
on the screen. There are 96 rows and 160 columns of dots on the screen:

- 1 6 0 -

96

Screen pixels

The reason that a diagonal line comes out jagged on the screen is that
it isn't actually drawn as a smooth line, but simply by filling in certain dots
on the screen. Each pixel can be in one of four conditions: it can be empty
(that is, it can be in the background color) or it can be filled in with one of
the three possible pens.

By the way, the length of a "turtle step" is not the same as the distance
between pixels. That is, when you type the command the
turtle does not move 100 pixels on the screen. How many pixels it actually
does move depends on the direction. If you're moving horizontally (head-
ing 90, for example), then moves through 50 pixels. If
you're moving vertically, the distance depends on the aspect ratio, which
is controlled by the . command. The usual aspect ratio is 0.8, in
which case moves 40 pixels (50 times 0.8). In this project,
since we're interested in saving a picture that is already on the screen
rather than drawing a picture with turtle commands, we have to think in
terms of pixels, not in terms of turtle steps.

I said that each pixel can be in any of four conditions (background or
three pens). Therefore, each pixel can be represented in the computer's
memory using two bits, or binary digits. Each bit can be either zero or one.
The four conditions are represented this way:

0 0 background
0 1 pen 0
1 0 pen 1
1 1 pen 2

Memory is grouped into bytes of eight bits. So each byte represents four
pixels. There are 96 times 160, or 15,360, pixels altogether on the screen.
The memory required is one fourth of that, or 3840 bytes. It happens that
the first byte of Logo's screen memory is at memory location number
16384. So the picture memory is arranged something like this:

284 P R O G R A M M I N G I D E A S

Picture memory

Characters (letters, digits, spaces, and so on) are represented in the
computer's memory by a number that is stored in one byte. For example,
the letter A is represented by a byte containing the number 65. Most of the
time you don't have to worry about this, but if you remember this fact, it'll
help you understand the process of storing information in disk files.

Representing the Screen in a Disk File

The most straightforward way to represent a screen picture in a disk file is
simply to write each of the 3840 bytes into the file. To find out what is in
each byte, we use the . operation, which outputs a number repre-
senting the byte at whatever memory location is used as its input. For
example:

will print the number in the first byte of Logo's screen memory. This byte
represents the first four pixels in the upper left corner of the screen. (For
Atari computers with 16K of RAM, the first byte of screen memory is in
location 8192 instead of 16384.)

It would be possible to save a picture in a file, then, with a program like
this:

Each byte of the picture memory would be represented in the file by a line
containing the digits in the number in that byte. That is, if a particular byte
happened to contain the number 125, that byte would be stored in the file
as the three digits 1, 2, 5, just as it is typed on the screen by a
command. Each digit takes up one byte in the file. Therefore, using this
scheme, it takes three bytes in the file to represent one byte in the picture!

S A V E P I C T AND L O A D P I C T 285

(Actually, another byte is used to represent the end-of-line code.) This leads
to very large files.

Instead, it would be better to use only one byte in the file to represent
each byte in the picture. This can be done by using the operation CHAR. This
procedure takes a number as its input and outputs the single character that
corresponds to that number. For example, CHAR 6 5 outputs the letter A.
Using this procedure, we can write the program as follows:

Savepict/Loadpict, Version 1

TO SAVEPICT :FlLE
SETWRITE :FILE
SAVEPICT1 16384 3840
SETWRITE []
END

TO SAVEPICT1 :LOC :NUM
IF :NUM=0 [STOP]
TYPE CHAR .EXAMINE :LOC
SAVE PICT1 :LOC+1 :NUM-1
END

TO LOADPICT :FILE
SETREAD :FILE
LOADPICT 1 16384 3840
SETREAD []
END

TO LOADPICT1 :LOC :NUM
IF :NUM=0 [STOP]
.DEPOSIT :LOC ASCII RC '
LOADPICT1 :LOC+1 :NUM-1
END

To use the SAVE PI CT procedure, you first draw a picture on the screen
using the usual turtle commands. Then you say

or whatever you want to name the file. The program writes 3840 bytes into
this file. Later, you can restore the picture to the screen by typing

The operation ASCI I, which is used in L0ADPICT1, is the inverse of
CHAR. It takes a single character as input and outputs the number that
represents that character. So ASCI I "A outputs 6 5.

Experiment with these procedures. You'll find that both saving and
loading pictures are quite slow. This is because the procedures SAVEPICT1
and LOADP I CT l are invoked 3840 times, once for each byte of screen mem-
ory, even if nothing is drawn in that part of the screen. Also, the files written
by this version of SAVEPICT are rather large (3840 bytes), so you can't fit
very many on a diskette.

286 P R O G R A M M I N G I D E A S

Sparse Data Representations

A typical turtle graphics picture is sparse. This means that most of the pixels
on the screen are unused (background color), which means that most of the
bytes of picture memory are zero. It seems silly to write a file that is mostly
full of zeros. By using a cleverer representation of the picture, we can write
smaller files and make the loading of a picture file much faster.

The idea is this: as we look through the picture memory, we'll find a
bunch of zero bytes, and then a nonzero one, and then a bunch more zero
bytes, and so on. To make this more specific, consider this sample fragment
of a picture memory:

In the first version of the program, we'd represent these twenty-four bytes
of screen memory as twenty-four bytes in the file. But instead, we can think
of this as 9 zeros, 23,4 zeros, 47,8 zeros, 15. We could store this information
in a file in this form:

In other words, we have decided that odd-numbered bytes in the file repre-
sent how many consecutive zero bytes are in the picture, while even-
numbered bytes represent actual picture data. By representing the picture
in this way, we've reduced twenty-four bytes of picture to six bytes in the
file. We'll find that it is also much faster to load a picture stored in this form.

In practice, there may be several hundred consecutive zero bytes in a
picture. This poses a slight problem: the largest number that can be repre-
sented in a single byte is 255. Therefore, if there are more than that many
consecutive zeros, the new procedure writes the sequence
0 in the file for each group of 256 zeros.

A second minor detail is that there must be a way for to know
when the end of the file has been reached. This isn't a problem in the first
version of the program because there all picture files are the same length,
3840 bytes. But in the new version, the length of the file depends on the
number of pixels that are drawn in a nonbackground color. To solve this
problem, writes the sequence 0 0 at the end of the file. This
sequence can't be part of real picture data.

Savepict/Loadpict, Version 2

S A V E P I C T AND L O A D P I C T 287

Experiment with this version of the program. You'll notice that
 isn't any faster, but is usually very much faster. The

reason is that must still examine every byte of picture memory,
because it doesn't know ahead of time where you've drawn lines. But

 only has to deposit information into the bytes in picture memory
that actually correspond to lines in the saved picture file.

Snapshots

In the second version, doesn't change the parts of picture mem-
ory that aren't used in the picture file you're loading. This suggests that it
should be possible to merge two pictures. (In the first version, loading a
picture file completely replaced whatever might have been on the screen
before you invoked Try drawing a picture, saving it with

 clearing the screen, drawing another picture, and then using
 to restore the first picture. Make sure that the two pictures aren't

in exactly the same part of the screen, so you can see whether the old
picture remains intact.

What you'll find is that this merging of two pictures works pretty well,
but not perfectly. The problem comes up if the two pictures use pixels that
are right next to each other, so that a pixel in one picture is part of the same
byte of memory as a pixel of the other picture. (Remember that each byte
contains four pixels.) Loading a new number into that byte eliminates the
pixel that used to be there. Still, this technique works perfectly if the two
pictures are widely separated, and it works pretty well in most cases.

It would be handy to take advantage of this merging capability by using
a picture file as a kind of rubber stamp that could be drawn in different
positions on the screen. The scheme is this: you draw a small picture near
the center of the screen. Then you use a version of to make a
"snapshot" of this picture. You can then use a version of to
"stamp" the saved picture anywhere on the screen, depending on the turtle
position.

288 P R O G R A M M I N G I D E A S

To make this work, the picture file must include information about
where the turtle was when the picture was taken. must be
modified to write this information in the file. Then must be
modified to compare the current position of the turtle to the one stored in
the file. If the two positions are different, the picture should be loaded into
a different part of the screen memory.

This third version of the program is quite a bit more complicated than
the others. The main reason for this is that it has to deal with the difference
between pixels and turtle steps. To know where to "stamp" the saved
picture in memory, we have to think in terms of pixels. But Logo tells us
the turtle's position in turtle steps. This position has to be rounded off to the
nearest pixel. Also, as explained earlier, the conversion between steps and
pixels depends on the aspect ratio. There is no easy way for a Logo proce-
dure to find out what this ratio is. The solution used in this program is that
it looks for a variable named in the workspace. If there is such a
variable, its value should be the aspect ratio. If not, the standard value of
0.8 is assumed.

Another complication is that if the picture is being loaded into a posi-
tion that is different from where it came from, part of the picture may
extend beyond the edge of the screen. The procedure in the
following program is used like but it checks to be sure that you
are trying to deposit into the part of memory that contains the picture.

Savepict/Loadpict, Version 3

S A V E P I C T AND L O A D P I C T 289

TO LOADPICT1 :LOC :NULL :BYTE

PUTBYTE : L0C+:NULL :BYTE
LOADPICT1 :LOC+:NULL+1 ASCII RC ASCII RC

TO PICTLOC

TO PUTBYTE :LOC :BYTE

Note: If you have a 16K Atari computer, you should use the following:

TO YDIFF :YLOC

To experiment with this program, try something like this:

CS

In practice, you wouldn't bother making a snapshot of something as simple
as a square, because it's easier to draw another square than to load it from
a disk file. But if you draw more complicated pictures, in multiple colors,
this technique can really be worthwhile.

Suggestion: Run-Length Encoding

What if you filled in the screen completely with some pen color and tried
to save that in a picture file? Using the first version of the program, of
course, it doesn't matter what's on the screen; the file ends up with 3840
data bytes. But with the two later versions, something else happens. The
picture memory is completely filled with bytes that represent the same
number, but not zero. For example, if you fill the screen with pen 0, the
picture memory will be

290 P R O G R A M M I N G I D E A S

In the sparse encoding scheme we've been using, this is thought of this way:
0 zero bytes, 85, 0 zero bytes, 85, and so on. What ends up in the picture
file is

The picture file is twice as big as the screen memory! This isn't a very good
result. The smart will be slower for this picture than the stupid
one. A sparse representation only works well if the picture is, in fact, sparse.

This is an extreme, unlikely example. But it isn't unlikely for part of the
screen to be filled in solidly. For example, if you're drawing a picture of a
farm, the background might be blue to represent the sky, and there might
be a large solid green area at the bottom of the screen to represent grass.

Still, although that green area isn't empty, it is uniform. The bytes
representing that area in screen memory are mostly all the same, even if
not all zero. We could use a slightly more complicated data representation
called run-length encoding, which would handle this case well. Here's how
it works. Instead of a two-byte sequence representing the number of zero
bytes and then the value of a data byte, we can use a sequence representing
the value of a data byte and the number of consecutive bytes containing
that value. For example, suppose the screen memory looks like this:

We would represent that in the picture file this way:

In this example, the version in the file is only a little smaller than the screen
memory. But in real situations, the run lengths would often be several
hundred bytes, not just five or seven.

This run-length technique is often used in serious computer graphics
work. It's especially efficient for black-and-white pictures, because there
are only two possible values for the data. You can just alternate them and
leave them out of the file. You only store the run lengths. That is, the
odd-numbered bytes of the file would contain the numbers of consecutive
black pixels and the even-numbered bytes would contain the numbers of
consecutive white pixels.

On the other hand, for a color picture that really is sparse, the represen-
tation we've been using is somewhat more efficient than the run-length
representation. The moral is that before you choose a data representation
for any problem, you should think hard about different possibilities!

PROGRAM LISTING

VERSION 1

SAVEPICT AND LOADPICT 311

0 . 8]

0 . 8]

292 P R O G R A M M I N G I D E A S

Display Workspace Manager

L
The Display Workspace Manager is a tool that helps you manage

projects that involve large numbers of procedures. The program lists all

your procedures on the screen. You can move a pointer around, marking

particular procedures. Then you can edit, erase, print, or save the marked

procedures.

 divides the screen into two parts. The top part is used to list the

names of procedures. The bottom few lines remind you of the commands

you can type to (For example, you can type to erase procedures.)

In the figure above, is being used to examine Blaster, a project in

this book. The arrow points to the word on the screen. is the

name of one of the procedures in Blaster. The pointer arrow can be moved

from one procedure name to another by using the arrow keys on the Atari

keyboard.

By Brian Harvey.

DISPLAY WORKSPACE MANAGER 293

In the next figure, the user has typed the PO command to DWM. DWM's

PO command tells it to print out the definition of the procedure at which

the arrow points, in this case STEER.

In the following figure, seven procedures have been marked with as-

terisks on the screen.

- - - - - GE 33 GU - - - - -
q a H Q EUIT SE S SI
R A i f a r r r l

In the next figure the user has typed the command ER, which means

to erase all the marked procedures. DWM has printed "Really erase 7 proce-

294 PROGRAMMING IDEAS

dures?" on the bottom line of the screen. It asks this question to make it

harder for someone to erase many procedures accidentally.

In the next figure, the user has typed for yes, and has erased the

marked procedures. It now displays a shorter list of the remaining proce-

dures.

- - - - - G E g i i m - - - - -
• • Q H E U I T ffllT (3 D A S E S E R O C I A R K S
a i ^ ^ r V f l T O T O G G L E M A R K

This is a large project. I won't attempt a complete explanation of every

detail of the program. Instead, I'll indicate the most important parts to

understand.

Creating the List of Procedures

In order for to work, it must have a list of the names of all the proce-

dures in your project. This list must be in a global variable named

DISPLAY WORKSPACE MANAGER 295

 If this list doesn't already exist, the first thing does

is to call create the list. This automatic creation of the list

requires a disk drive with a writeable disk in it! works by

doing a command while writing to the disk, then rereading the results

to find the names of your procedures. When the list is created automatically,

it is sorted alphabetically. The sorting process is quite slow, because it's

done simply rather than cleverly. (Read the Mergesort project for another

sorting technique.) The automatically generated list omits all procedures

whose names start so that the procedures in the program itself

won't clutter up your list.

If you want to save time when starting up or if you want the

procedures in your project listed in some order other than alphabetical, you

can create the variable yourself and make it part of the

workspace file.

How Arranges the Display

Once the list of procedures exists, lists them on the screen. This is done

by two main procedures, and The first

these figures out how the names should be arranged on the screen, given

the number of procedures you have in your list. The more procedures, the

more columns on the screen will be required to list them all. The more

columns, the less wide each column can be. This limits the length of a

procedure name that can be displayed. Therefore, the program uses the

smallest number of columns that will fit your list. Then the

procedure uses this information to draw the display.

If the name of a procedure is too long to fit in a screen column, an

inverse video plus sign (+) is shown at the end of the truncated name.

Reading Commands

The procedure reads and processes the commands

type to the program. Commands are either one or two characters long.

Here is a list of the commands.

arrows Move the pointer up, down, left, or right. You can type the

arrow keys either with or without the CTRL key held down,

space bar Mark the procedure where the pointer is, if it's not marked

already, or unmark it if it is. An asterisk is displayed next to

the name of marked procedures.

ED Edit the marked procedures in the Logo editor.

 Erase all the marked procedures. This command first tells you

how many procedures are marked and insists that you type

 to confirm that you really want to erase the procedures.

PO Print out on the screen the single procedure whose name is

pointed to by the arrow.

 List all marked procedures on the printer.

D: Save all marked procedures on the disk. This command

prompts for a filename to be used for the saved procedures.

Notice that these save files do not contain the values of varia-

296 PROGRAMMING IDEAS

bles! But the procedures in them can be loaded with the

command.

 Zero Marks. Unmark all procedures.

 Quit. Exits from

If there are no marked procedures, the commands that normally apply

to marked procedures apply instead to all procedures in the display. Be

careful about erasing!

Possible Extensions

DWM takes up just under 2000 nodes, somewhat more than half the available

space. This limits the size of the programs you can use it on. (This is particu-

larly unfortunate since it's the big projects that most need this sort of help.)

If there were space, this project could be the basis for implementing

workspace management tools like and which are found in

some other versions of Logo. The technique would be to have several lists

of procedures instead of just one list.

PROGRAM LISTING

In the program listing that follows, characters that are underlined

represent inverse-video characters on the Atari.

CREATING THE LIST

DISPLAY WORKSPACE MANAGER 297

PRINTING THE MENU

318 PROGRAMMING IDEAS

READING COMMANDS FROM THE KEYBOARD

DISPLAY WORKSPACE MANAGER 299

MOVING THE POINTER

300 PROGRAMMING IDEAS

SETTING AND CLEARING MARKS

EDIT

PRINTOUT

DISPLAY WORKSPACE MANAGER 321

ERASE

SAVE TO D: OR P:

302 PROGRAMMING IDEAS

A Logo Interpreter

Introduction

Suppose you were marooned on a desert island, with only your Atari and

an assembler/editor cartridge. If you wanted to use Logo, you would have

to write it yourself. H ow would you go about writing a computer language?

You would have to write a program that runs the language. It is possible to

write such a program, with some simplifications, in Logo itself.

Logo is an interpreted language. When you run your programs, Logo

reads through them one instruction line at a time and executes each instruc-

tion in the line before proceeding to the next line. This is called interpreting

a program.

Once you grasp the basic principles of interpreter design and opera-

tion, you could write an interpreter for any computer language, not just

Logo. And you could write your interpreter in another language, like as-

sembly language.

This project is about writing an interpreter for Logo in Atari Logo.

We' l l call this interpreter MLogo(for micro-Logo), to distinguish it from

Atari Logo, which is an interpreter written in Atari machine language.

How to Use MLogo

To MLogo ,

MLogo will prompt you for input with a ? in inverse video.

MLogo has fewer primitives than Atari Logo; among them are some list

and arithmetic operations and some turtle commands.

'PRINT SUM 3 4

1PRINT FIRST BF "WALLABEE

1FD 100

You can write procedures in MLogo.

2T0 POLY :SIDE :ANGLE

>FD :SIDE

>RT :ANGLE

>P0LY :SIDE :ANGLE

>END

MLogo is different from Atari Logo in some ways. MLogo doesn't care

whether a line outputs or not. If you type:

SUM 3 4

By Jim Davis and Ed Hardebeck. An earlier version of this project was written by Henry
Minsky.

A LOGO INTERPRETER 303

the value is just ignored. In Atari Logo you would get the error message:

MLogo doesn't have the STOP primitive. Every line of a user procedure

is executed. It also doesn't have OP. The value of a user procedure is the

value of the last line in it.

ITO GREET :WHO

>SE "HELLO :WHO

>END

IPRINT GREET "ARTHUR

If you typed this to Atari Logo, you'd get an error:

Another difference is that all variables start with the empty list as their

value.

ISHOW :NOVAL

In Atari Logo, you'd get an error.

If you try to use an undefined procedure in MLogo, you get a mysteri-

ous error message, then MLogo "crashes."

'ZIPPER 3

After MLogo crashes, you are once again talking to Atari Logo. You must

restart MLogo.

You may notice other differences as well. The reason for these differ-

ences is that it's difficult to implement Logo completely.

Now that you've had a chance to use MLogo and know what it does,

we'll explain how it does it. The discussion, however, omits many details

about interpreters.* Throughout this explanation we use the technical

terms usually used by Logo implementors for describing Logo interpreters.

Interpretation Happens a Line at a Time

The structure of MLogo resembles that of Atari Logo. The normal action

of Logo is to repeatedly type a prompt (?), read a line from the keyboard,

*For more information see Structure and Interpretation of Computer Programs by Ger-
ald J. Sussman and Harold Abelson, MIT Press and McGraw-Hill, 1984.

304 PROGRAMMING IDEAS

and evaluate it. The top-level loop of MLogo is:

The output of is a list of what the user typed.

 accepts a line as its input and carries out whatever instructions

the line contains (for example, moves the turtle, prints a sentence, and so

on).

 does the actual evaluation of the instructions of a line. The

easiest way to understand it is to look first at its last line.

The operation removes the first item from the variable

 and outputs it. Each call to removes one item and outputs

it. In this way each item is inspected in turn.

EVAL takes an item, decides what kind of thing it is, and evaluates it to

get its value. The value output from this call to is the input to

when it recurses. If there's nothing left on the line, this is the value to

output. Otherwise, there's another instruction on the line.

When calls none of the line has been evaluated. If it

should turn out that the line has no instructions (a blank line), then there

is no value to output. is just a default value.

Here's an example of how this recursion works. Suppose you type

to MLogo. calls with the list as input.

 outputs and is is passed to

for evaluation.

In evaluating FD, the number 6 0 would be removed from the line (it

is an input to When stops, the value of is

Since this is not an empty list, evaluation would continue.

A LOGO INTERPRETER 305

The Rules of

The value of an item is determined by these rules.

• The value of a list is just the list.

• The value of a number is just the number.

' The value of a quoted word is the word itself without the quote.

• The value of a word prefaced with a colon (called "dots") is the value

of the variable.

• Otherwise the word is the name of a procedure to call. Inputs to the

procedure appear after the name of the procedure.

 it

How Carries Out Its Rules

's first test is for a list. If the item isn't a list, it must be a word. The

remaining tests all assume the item is some kind of word and don't include

 as part of the test.

The predicate tests whether its input is a quoted word.

The operation removes the quote and outputs the word.

In Logo a colon ("dots") before a word is a request for the value of a

variable. The predicate checks this case.

The procedure UNDOT outputs the word with the dots removed.

 outputs the.value of a variable.

306 PROGRAMMING IDEAS

The predicate checks whether the word has been assigned a

value. If it has one, outputs it, otherwise the value is • . We'll

explain more about this later on.

Evaluating a Procedure Call

To evaluate a procedure call, we have to know some things about the

procedure being called, such as how many inputs it has and whether it's a

primitive or a user procedure. Information about a procedure is kept in the

definition of the procedure. We'll describe definitions in detail later. For

now, we'll just say that the operation outputs the definition and

leave it at that.

When EVAL wishes to evaluate a procedure, it passes the definition of

the procedure to

 actually runs the procedure. It takes two inputs. The first is the

definition of a procedure, the second is a list of values for the inputs. It

causes the procedure to "do its thing," whatever that is, and outputs

whatever the procedure outputs.

Before we can run the procedure, we have to get the values of its

inputs. We usually refer to inputs as arguments (or args, for short).

The operation NARGS outputs the number of arguments this procedure

expects. extracts this from the definition. (We'll see later.) This

number is the input to takes these inputs from the

line being evaluated and evaluates each one, returning a list of the values.

To simplify MLogo, everything outputs. If commands were allowed in

MLogo, as they are in Atari Logo, would have to know if an

output was expected and make the proper complaint if an output was

missing or an unexpected output showed up.

Inputs Require Recursive Evaluation

 calls to get the next item in the line being

evaluated and makes a recursive call to EVAL to evaluate this item.

Here's an example. Suppose we type:

A LOGO INTERPRETER 307

MAKE "DOGS 3

PRINT :DOGS

to MLogo. Our example begins after the when evaluating the call to

 gets as input. This is a dotted word so

 is called with It outputs the value

 which is outputs

Before we show how works, we'll give some details of procedure

definitions.

Procedure Definitions

Both primitives and user procedures have definitions. Their definitions

have some features in common and some differences.

In the remainder of this discussion, we refer to a primitive as an sfun

(System FUNction), pronounced "ess-fun." Likewise we refer to a user

procedure as a ufun (User FUNction), pronounced "you-fun." These are the

terms usually used by Logo implementors.

Procedure definitions are kept in lists.

The first item in the list is the word or The predicate

distinguishes sfuns from ufuns by inspecting this item.

The second item is the number of inputs the procedure expects (this

may be zero). The operation outputs this number.

The remaining items of the list differ for the two types of procedures.

We'll show you the rest of an sfun definition now and take up ufuns later.

308 PROGRAMMING IDEAS

The third and final item in an sfun definition is the name of the Atari

Logo procedure that implements the MLogo primitive.

The operation outputs this procedure.

If you print the names in the Logo workspace, you'll see definitions for

all the MLogo primitives. All the definitions are in words beginning

with $.

?SH0W :$PRINT

?SH0W NARGS :$PRINT

?SH0W SFUN.FUNC :$PRINT

?SH0W :$SUM

Sometimes an MLogo primitive is implemented directly by an Atari

Logo primitive (for example, and sometimes by a procedure

The operation makes a definition for an sfun.

N o w we can finish discussing the evaluation of a procedure call.

 Evaluates a Procedure Call

The first input to is the definition of a procedure to evaluate. The

second input is a list of input values for that procedure. Sfuns and ufuns are

evaluated differently.

The command applies an sfun to its inputs by building a

list as input for

Suppose you typed the following to MLogo:

MAKE "WHO "LOWELL

PRINT :WHO

A LOGO INTERPRETER 309

While evaluating the call to would get the inputs

 (the definition of and (the value of the vari-

able

Recall that outputs the procedure that implements the

sfun. In our example it will output

 would call with the input

would call on behalf of MLogo and output whatever it output.

Here's the MLogo sfun

The operation puts a quote in front of words that need it.

Variable Values

The values of MLogo variables are stored in Atari Logo variables with

slightly "funny" names. (This is useful for learning about how MLogo works.

You can stop it and print out names. You can easily spot all MLogo variables

by their names.)

The operation makes these names by adding a # to the front of

the name. (The name stands for Variable SYMbol.)

The command sets the value of an MLogo word, and gets

the value of an MLogo word. They both use to get the name of the

word to use. translates from an MLogo name to an Atari Logo name.

310 PROGRAMMING IDEAS

The predicate tells whether there is a value for the word.

A second reason to use "funny" names for MLogo variables is that

otherwise an MLogo user might set a variable with the same name as one

used in the MLogo program itself. The results would be very strange.

Adding the character guarantees that the names will never be the same.

Using a scheme like the one for variables, the definition of a procedure

is kept in a variable whose name is the name of the procedure with a "$ "

prefix. The operation (Function SYMbol) outputs the Logo variable for

the definition of the MLogo procedure.

The command sets the definition of a procedure, and the opera-

tion outputs the definition of a procedure.

How Sfuns Are Defined

The primitives we implemented are all very similar to familiar Logo primi-

tives. In some cases we could call Logo primitives directly. But because

every MLogo sfun must output, we had to write small Atari Logo proce-

dures for those that don't output. These procedures call the sfun, then

output a value. The value may just be TRUE.

A LOGO INTERPRETER 311

 defines an sfun, that is, it associates the name of an sfun with

the definition.

All sfun procedures' names begin with a percent sign to distinguish

them from procedures that are part of MLogo itself. This makes it easy to

spot all the MLogo sfuns in the workspace (except those implemented

directly by Atari Logo primitives).

Ufun Definitions Include Arglist and Body

Like sfuns, ufuns have a definition, but the definition is slightly different.

A user procedure consists of an arglist and a body. The arglist is a list of

the input variables for the ufun. The body is a list of the lines of the

procedure. Like sfuns, ufun definitions are lists.

If we had defined SQUARE by

. . . then the definition would be

?SH0W FSYMEVAL "SQUARE

The arglist is the body is

Remember that MLogo ufun definitions are stored by the interpreter as

Atari Logo variables, not as Atari Logo procedures.

The operation makes a definition for a ufun. The oper-

ation outputs the arglist from the definition, and the opera-

tion extracts the ufun body from the definition.

312 PROGRAMMING IDEAS

Evaluating a Ufun Means Evaluating
the Lines of Its Body

An sfun is a primitive, but a ufun body is a collection of lines, each requiring

evaluation itself.

 does the actual evaluation of the lines of the body. The

value of the ufun is the value of the last line evaluated.

 recurses in the same way does. To understand it,

look at the recursive call first. Each time recurses its first input

is the value from evaluating the previous fine. When the last line is evalu-

ated, this is the value to output.

When is first called (from it is passed

 as a first input. When first called, . has yet to evaluate

a line, so there is no value to output from the ufun. If the ufun body is

empty, then is output. Otherwise there is at least one line to

evaluate. evaluates the first line in the body, and recurses with

this value and the remainder of the lines.

Ufuns Have Inputs with Names

Ufuns can have inputs. The title line (and therefore the arglist) of a ufun lists

a set of variables that hold the inputs to the ufun. While a ufun is being

evaluated, it can find its inputs in these variables.

For example, if you have the procedure:

and you type:

GREET "PHIL

Logo (either Atari Logo or MLogo) responds:

Logo acts as if the value of had been set by before any of

the instructions were evaluated. The effect is like what you could get by

?MAKE "WHO "PHIL
7PRINT SE "HELLO :PHIL

A LOGO INTERPRETER 313

?MAKE "WHO [BAKED HAM]
?GREET "BOB

?SH0W :WHO

?MAKE "WHO "BOB
?PRINT SE "HELLO :WH0

?SH0W :WHO

 binding

How Binding Is Implemented

 bind frame.

314 PROGRAMMING IDEAS

 simply recurses through the argument list and the values.

There is a one-to-one correspondence between the argument list and the

values list. For each input there is a value.

After a ufun is evaluated it outputs a value, and this is the value that

 should output as the value of the ufun it was asked to apply.

But first the bound variables must be unbound. This is the purpose of

' S input is the output of the ufun. It holds onto this value while

 undoes the binding, then returns the held value. is ex-

plained later.

A bind frame enables the interpreter to restore the values of the input

variables of a single ufun call. But a ufun can call other ufuns. W e need one

bind frame for each ufun call. There will be as many bind frames as the

depth of calling. Bind frames are created as calls occur and cleaned up as

the call returns. The most recently added frame is always the one to clean

up.

W e need to keep track of all these bind frames and ensure we bind and

unbind in the same order calls and returns are made. To do this, we use a

stack.

The Concept of a Stack

A stack is a method of arranging data. You can think of it as a pile of papers

on a desk. Only the topmost sheet is visible (if the stack is neat) because it

covers the others. If you add another sheet to the pile, it becomes the

topmost. You can only touch the top sheet. If you remove it, a new top sheet

is exposed.

This order of accessing is sometimes referred to as "Last In, First Out,"

because the last item added to the stack is the first one that can be removed.

Stacks Are Implemented by Lists

Most computers have machine instructions to implement stacks. But since

we wrote MLogo in Logo and not in machine language, we had to imple-

ment stacks. W e decided to use Logo lists to hold stacks, and to put the top

of the stack at the front of the list so that we could use FIRST to get the top

item on the stack and to add a new one.

PUSH puts something on the top of a stack. It takes two inputs. The first

is the name of the word containing the stack, the second is the item to add

to the stack.

A LOGO INTERPRETER 315

 makes a new list by adding the item to the old contents of the

stack. This new list is assigned to the variable holding the stack.

The operation outputs the top value on the stack. This value is

removed from the stack.

The input to the operation is the variable holding the stack.

of this variable outputs its value—the list holding the stack. The first item

in the list is the item to output. Before outputting it, sets the stack

variable to hold the of the list, thus removing the top item from the stack.

This example shows how stacks work.

?MAKE "STACK []
?PUSH "STACK 9
?SH0W :STACK

?PUSH "STACK 5
?PUSH "STACK 2
?SH0W :STACK

?PRINT POP "STACK
2

?SH0W :STACK

Bind Frame in Detail

A bind frame is a list of bindings. Each binding is a list of a name and a value.

The name is the name of a variable that must be saved, and the value is the

value it had at the time it was saved.

A typical bind frame might be

This bind frame is holding two variable bindings, for and

 makes a bind frame. Its input is the argument list of a

ufun. Each input is a variable whose value must be saved.

316 PROGRAMMING IDEAS

The Sfun Harder Than Others

In Logo the primitive TO treats its inputs differently from all other sfuns.

It does not evaluate them. The first input to is the name of the procedure

to define. The rest of the inputs are the names of the inputs of the procedure

being defined. These are written with dots to remind you that they are the

inputs.

1T0 SQUARE :A
>PR0DUCT :A :A
>END

TO manages the trick of not evaluating its inputs by lying to the evalua-

tor about its number of inputs. It says it takes none but then goes and takes

them off (where the current line is kept) by itself. evalu-

ates the arguments as it collects them. This trick also lets TO take as many

arguments as are present on the line.

The TO definition is:

A LOGO INTERPRETER 317

The procedures that implement it are

The operation pops the input names directly off

and removes the dots.

 takes as inputs the name of the procedure to define, a list of

its arguments, and its body, which is a list of the lines that make up the

procedure.

 makes the actual definition. W e have already seen it.

 reads an entire ufun body, prompting with > before read-

ing each line.

 recurses, reading a line each time, until it gets a line

Reading Things You Type

Both and the need to get typein from the user. They don't

want empty lines as input. Each has its own prompt character. They can

both share

318 PROGRAMMING IDEAS

Some Improvements

Here are some modifications to MLogo to make it more like Atari Logo. W e

didn't include them in MLogo because we wanted to keep it simple to

explain. If you want to have these extra features, you can type in the

following procedures.

First, a synonym for

Here's the sfun PO:

PO is by far the longest sfun yet, because there is no useful Atari Logo

primitive for it. The Atari Logo primitive prints out Atari Logo user

procedures, which are not stored like MLogo user procedures.

The procedure prints each word in the argument list,

A LOGO INTERPRETER 319

preceded by a space and a colon. (In the second line of PO. ARGS, a space

appears after the backslash even though you can't tell from this listing.)

To add to MLogo we have to change and

As is, each line is always evaluated. By adding a flag variable we can

cause evaluation to stop.

Here's the sfun OP.

The input to is the value to output. This value is stored in the

variable for reference by the evaluator. sets the flag which

causes the evaluation of the body to stop.

We have to modify the evaluator to check these flags.

PROGRAM LISTING

320 PROGRAMMING IDEAS

A LOGO INTERPRETER 321

322 PROGRAMMING IDEAS

Map

Have you ever written a procedure like this:

By Brian Harvey.

MAP 323

Or like this:

Or like this:

All of these procedures have a common pattern. They go through a list,

doing something with each member of the list, and then stop when they get

to the end of the list. The procedures differ in what they do with the

members of their input list. In one case it's a list of things to print; in the

second it's a list of frequencies of musical notes; in the third it's a list of color

numbers. But they all share this structure:

You can think of this skeleton procedure as a template for many proce-

dures that do similar work for you.

Mapping Commands

You can write a single procedure that does all these things. What's special

about it is that it is a general tool that can apply any procedure to each

member of a list. This general process is called mapping the procedure over

the list, so we call this general procedure Here are some examples.

?MAP [PRINT] [VANILLA CHOCOLATE GINGER LEMON]

?MAP [PRINT FIRST] [VANILLA CHOCOLATE GINGER LEMON]

324 PROGRAMMING IDEAS

?MAP [TYPE FIRST] [EVERY GOOD BOY DOES FINE]

The first example of using is equivalent to the procedure

with which we started this discussion. The first input to says what you

want to do to each member of the input list (in this example, it). The

second input is the list over which you are mapping. So the instruction

is equivalent to

Here are the procedure definitions.

You can use with more complicated instructions than just

In the second example, the first input to is the list

This example works as if we'd written a special procedure like this:

W e can use to obtain the same effect as the procedure we

showed earlier.

MAP [WAIT 60 SETBG] [0 88 74 7]

To get the same effect as our procedure, we have to work a little

harder. The problem is that the frequency input to comes in the

middle of the instruction, like this:

 expects to put each member of the list at the end of an instruction, not

in the middle. What we have to do is write an auxiliary procedure that takes

the frequency as a single input:

MAP 325

MAP [NOTE] [440 880 220 440]

How It Works

What makes it possible for to be a general-purpose tool instead of a

procedure for a specific purpose is its use of Logo's command. This

replaces the specific commands like or or in the earlier

examples. The input to is a Logo instruction that is assembled out of

two parts: the template, which is the first input to and one member

of the list, which is 's second input.

Let's look at an example. If we say

MAP [PRINT] [VANILLA CHOCOLATE GINGER LEMON]

then has to carry out these four instructions:

Each of these four instructions is made by combining the template [PRINT]

with one member of The com-

bination is made using LPUT, which adds the list member at the end of the

template. For example, the expression

outputs the list

The procedure itself has much the same pattern as the examples

at the beginning of this discussion. The first instruction inside is the

 stop rule; the last instruction is the recursive use of with

the of the input list. Compare with for example:

326 PROGRAMMING IDEAS

One possibly confusing detail in has to do with quotation marks.

Notice that if you want Logo to print the word you can't say

 Wrong!

To assemble this instruction, the first input to LPUT must be the word

 including the quotation mark as part of the word. The procedure

 is used by to supply the needed quotation marks.

Mapping Operations

So far, the templates we've used have been commands. That is, they have

been Logo procedures that do something external, like print something,

make a sound, or change the color of the screen. An even more powerful

facility is to map operations over a list, producing (outputting) a new list of

the results. Perhaps an example will make this clearer.

?SH0W MAP.LIST [FIRST] [THIS IS A LIST]

?SH0W MAP.LIST [SQRT] [1 2 3 4]

Like generalizes a common pattern of Logo proce-

dures. The examples here could have been written as special-purpose

procedures this way:

 is an operation. Its output is a list of the same length as its

second input. Each member of the output list is the result of applying the

template to a member of the input list.

MAP 327

Here the first input to is the same expression that was used to assemble

the instructions in

An example of using to apply a procedure to each word of

a sentence is this program to translate a sentence into Pig Latin.

7PRINT PIGLATIN 'HELLO

?PRINT MAP.LIST [PIGLATIN] [THIS IS GREEK TO ME]

Mapping Over Words

In Logo, we can assemble letters into words, just as we can assemble words

into lists. We can extend the idea of mapping to apply a procedure to each

letter of a word.

 is the same as except that it uses instead of

as the combining operation, and it builds onto an empty word instead of an

empty list.

Here is an example of how to use Suppose you want to print

a word in inverse video (black on white). On the Atari computer, to print

any character in inverse video, you must add 128 to the code that repre-

sents that character.

7PRINT MAP.WORD [CHAR 128+ASCII] 'HELLO

328 PROGRAMMING IDEAS

If we put this into a procedure, we can print an entire sentence with each

word inverted combining and

7PRINT MAP.LIST [INVERT] [THIS IS A TEST.]

List Reduction

There is one more way in which an operation can be applied to the mem-

bers of a list. Consider an operation with two inputs, like or

It is often convenient to be able to add up all the numbers in a list, or

multiply them together. Of course, as in the earlier situations, we could

write special-purpose procedures.

?PR ADD [1 2 3 4]

10
?PR MULTIPLY [1 2 3 4]

What we'd like to do is produce a general tool for these situations.

?PR REDUCE [SUM] [1 2 3 4]

10

MAP 329

?PR REDUCE [PRODUCT] [1 2 3 4]

There is one slight complication that prevents from following

exactly the pattern of and The problem is that each of those

procedures knows about the identity element for the corresponding opera-

tion. The identity element is the value to start with when the input list is

empty: 0 for 1 for To make a general tool, we want

to avoid building this kind of information into it. The solution is to apply

REDUCE recursively only down to the point where there are two members

remaining in the input list, then just apply the template to those two. The

resulting procedure is a little messy, but if you go through.it carefully you'll

see that it's really much like the mapping procedures we've used before.

Here are more examples of how can be used.

?PRINT REDUCE [WORD] [A B C D]

?SHOW REVERSE [A B C D]

SUGGESTIONS

• You could modify these procedures so that the list members could

be inserted anywhere in the template, instead of only at the end. For

example, the music example that earlier required writing an auxil-

iary procedure could instead be written

where the question mark indicates the position in the template into

which the members of the input list are placed.

• The general name for doing something over and over is iteration.

Mapping is a particular kind of iteration, based on using the mem-

bers of a list, one after the other. Other kinds of iteration can also be

330 PROGRAMMING IDEAS

invented using the RUN primitive. For example, here is an iteration

procedure that tests a predicate to control the repetition.

?CS
?WHILE [HEADING < 270] [FD 10 RT 10]

You might try to write a procedure to create numeric iteration.

?STEP "NUM 3 7 [PRINT :NUM * :NUM]

16

• Use and to implement a substitution cipher. A

cipher is a technique for protecting secret messages by transforming

each letter into some other form. (Ciphers are sometimes called

codes, but, strictly speaking, a code is a technique that transforms a

word by looking it up in a dictionary, rather than by manipulating

it letter by letter. A foreign language is like a code.) Write a proce-

dure that takes a single letter as input and outputs some secret

representation of the input letter. Then you can encipher a word by

applying to it, and you can encipher a sentence by apply-

ing to encipher each word. The example of inverse video

works like a cipher, although of course the result isn't very secret.

 uses to accumulate the results for each member of

the input list, and uses to accumulate its results.

Logo has other accumulating operations: and Try

writing versions of that use each of these. Are any of them

useful?

• Here is a tricky example.

?SH0W FLATTEN [[THIS IS] [A [L I S T]]]

FLATTEN combines iteration over a list, list reduction, and recursion,

since the template input to uses itself. The pro-

cedure converts any list into a flat list, one that has only words as

MERGESORT 331

members. Can you see why both and must be

used? Compare the result of to these:

SHOW REDUCE [SE] [[THIS IS] [A [L I S T]]]

SHOW MAP.LIST [FLATTEN] [[THIS IS] [A [L I S T]]]

PROGRAM LISTING

Mergesort

People often want to use computers to sort information of various kinds.

For example, you may want to list your friends' addresses in alphabetical

order, or you may want the same information arranged in order of their

birthdays to remind you when to send cards. Programmers have invented

many different techniques to solve the sorting problem. Generally, the

methods that are easy to understand tend to run slowly, while the faster

methods are rather complicated. Here is a method that is medium-fast and

medium-tricky. Its name is mergesort.

In Logo, we'll represent the information we want to sort as a list of

items. The general strategy is this:

1. Divide the list into two smaller parts.

2. Sort each part separately.

3. Merge the two sorted lists into one big sorted list.

This may not seem like much of a strategy, because we are still left with the

problem of sorting the smaller lists in the second step. But the clever part

Program by Danny Hillis; write-up by Brian Harvey.

332 PROGRAMMING IDEAS

is that if we keep applying the strategy to the smaller lists, eventually we

get lists with just one member, and we can simply declare these lists sorted.

Here's a specific example. To make it easy to read, we'll sort a list of

numbers in size order. Start with this list:

Divide it into two smaller lists.

Now sort the first of the smaller lists. To do that, divide it into two smaller

lists.

Now sort the first of these lists, again by dividing it into two smaller lists.

Each of these lists has only one member, so each is already sorted. Now we

merge them to get

Now we can merge this list with its "partner," which is the list [27] , The

result is

The next step is to sort the "partner" of this list, namely the list [1 10

. This also involves dividing it into smaller lists, as before. To make this

example shorter, we'll skip the steps of sorting the list . Finally

we are left with two sorted lists:

The last step is to merge these:

Dividing a List into Two Parts

The first step in the sorting process is to divide a list into two parts. To do

that, we can use procedures and

MERGESORT 333

You may notice that refers to in-

stead of The reason for this difference is that if the input

list has an odd number of members, we must divide the list into two pieces

that differ in length by one. For example, if the input list has five members,

 will output the first three members of the list and

will output the last two members.

?SH0W FIRST.PART [14 3 27 1 10]

?SH0W LAST.PART [14 3 27 1 10]

[1 10]

Merging Two Ordered Lists

The last step of the sorting procedure is to merge two lists. The

procedure assumes that each of the two lists is already in the correct order.

 takes two inputs, namely, the two lists.

 compares the first member of one input list with the first mem-

ber of the other list. One of these becomes the first member of the final

merged list; is applied recursively to the remaining members of the

input lists.

 uses a subprocedure, which tells whether one item

should come before or after another. takes two inputs. It outputs

the word if the first input comes before the second input, or

otherwise.

You can write different versions of depending on what order-

ing you want to use for your sorted lists. If you are sorting numbers by size,

as in the earlier example, you can use this version:

If you want to sort words alphabetically, or use some other ordering,

you need a more complicated version of We'll show an example

later.

334 PROGRAMMING IDEAS

Putting It All Together

We 've written the easy parts of this sorting method. The hard part is putting

it all together. The main procedure SORT does this. It takes one input, which

must be a list. It outputs the same list, but with its members in sorted order.

If the input list is empty, or has only one member, then the list is

already sorted. outputs the list unchanged. For larger lists, goes

through the steps we described at the beginning.

1. It uses and to divide the list in two.

2. It uses to sort each of these smaller lists.

3. It uses MERGE to combine the resulting ordered lists.

Alphabetical Order

Sometimes we want to deal with information composed of words or sen-

tences, rather than numbers. Here are procedures to alphabetize lists of

words.

 takes two inputs. Each input is a sentence (in other

words, a list of words). It outputs the word if the first input comes

before the second alphabetically.

 is similar to except that its

two inputs are single words instead of lists of words.

An Example

Here is a list of the greatest songs of all time.

MERGESORT 335

(To type in a long list like this, you have to use the Logo editor. When

you are typing directly to the ? prompt in Atari Logo, there is a limit to how

long a line you can type.)

This list contains five items. Each item is itself a list with two members,

the title and artist of a record. This is a simple example of a data structure.

That is, instead of having a list of words or a list of numbers, we have a list

of more complicated things, each of which is itself made up of smaller parts.

Suppose we want to sort these songs by title. W e can define a

procedure to do that.

The of each song is a list containing its title, so this version of

sees which title comes first alphabetically.

?SH0W SORT :RECORDS

W e can make this prettier by using a formatting procedure to print

each record on a separate line.

?FORMAT SORT :RECORDS

336 PROGRAMMING IDEAS

Now suppose we want to sort the same list of records, this time by artist.

To do this, we replace the procedure with one that uses the

of each item instead of the FIRST.

The of each song is a list containing the name of the group that

performed it.

?FORMAT SORT :RECORDS

SUGGEST IONS

If you are interested in learning about other ways to write sorting

programs, the standard reference book on this subject is Sorting and

Searching, volume 3 of The Art of Computer Programming, by Donald E.

Knuth (Reading, Mass.: Addison-Wesley, 1973).

P R O G R A M L IST ING

Note: There are three different versions of in the write-up.

The one here is the first version. and are the other two

versions and can be substituted for in

BESTLINE 337

Bestline

Bestline is a Logo project that draws the "best-fitting" straight line on a

Cartesian graph of some data points. It is a strategy commonly used among

scientists to predict the value of some quantity based on another.

An Example: A Scientific Experiment

I got the idea for this project while helping a friend interpret data from a

laboratory experiment. The purpose of the experiment was to find the

concentration of antibodies in each of a large number of test tubes. This is

done by adding radioactive iodine to the antibodies. A certain amount of

the iodine bonds to the antibody and the rest is removed. The concentration

of antibodies can be determined by measuring how much iodine bonded

to them. Since the iodine is radioactive, you can run it through a machine

that measures how much radiation is emitted by each test tube. In this

experiment, the radiation (rad) counts were collected and processed by a

computer in my friend's lab. I thought I could write a Logo program that

could generate a "best-fit" line for this data and for samples of other data.

By Julie Minsky.
*In statistics, this kind of plot is called a scattergram.

338 PROGRAMMING IDEAS

Making a Graph of the Data

In the antibody experiment, we take samples of known antibody concentra-

tions, measure their radiation counts, and plot them on a graph. For each

known concentration, we plot the corresponding radiation count.* When

we plot all the points, we might see:

2400 - -

II C CO
1600 ••

1200 • •

400- •

1.0 1.5 2 0

radiation count (rads)
2.5

W e can use this plot for looking at the data from our samples of known

concentrations. H o w can we use this data to estimate the unknown concen-

trations of our experimental samples?

W e know that for this kind of experiment, the radiation count of a

sample is proportional to the concentration of antibodies in it. That is, when

we double the concentration, the radiation emitted will be doubled. This

relationship suggests that the graph of radiation versus concentration is a

line. W e need to find a line on which we can look up an estimate of the

concentration of a sample once we have experimentally found its radiation

count.

Looking Things Up on a Graph

Let's look at the graph above. It shows a regression line plotted for the data

points in this experiment.* Once we know how much radiation is emitted,

*The "best-fitting" line through a sample of data points is called a "least squares," or
regression, line and is calculated from the data points.

BESTLINE 359

we can estimate the concentration of antibodies present. For example, if

the radiation count is 2, then the concentration is estimated to be 1600

picograms/ml.

This line was already calculated for this particular experiment; some-

one plotted the data points and determined the line. Different samples of

data generate different graphs and regression lines.

For example, a realtor selling office space might want to know how

much to charge for a 1700-square-foot building. Let's say the realtor called

other realtors who sold office space in the same community and asked them

how much they charged for buildings of different square footages. A helpful

graph would be price plotted against square footage. While the realtor

might consider other factors in setting the price (for example, property

location, condition of the building), she is able to estimate the market price

for the office space.

500 1000 1500 1700 2000

area
(square feet)

Possible Lines

Many different lines might be drawn through the known sample points.

How can we find a line that goes through all the measured points and makes

sense for our data?

Since this is a real-world experiment, the sample points don't all lie

exactly on a straight line. W e could draw lots of lines near these data points.

W e would like to find the one line that goes as close as possible to all of

them.

E

radiation count (rads)

340 PROGRAMMING IDEAS

Moving the line closer to some points will increase its distance from

others. Some of the lines fit the data so poorly that we wouldn't even

consider them. Others would seem to be pretty good fits to the data. W e

need to find a way of determining the line with the best fit, the line that

comes closest to all the points. How can we choose which line is the best

fit?

A Technique for Finding the Best Line

There are two things you need to know to plot a line: its slope (m) and its

y -intercept (b). The standard equation for a line is

y — mx + b

Once you know m and b, you can use the equation to find the y

coordinate for any x.

A method usually used to find the best-fit line is called "least squares."

The least squares line is that which minimizes the sum of the squares of the

vertical distances between the line and the data points. It is a neat way of

solving the problem when the real-world data points are not exactly on the

line (this is usually called minimizing the error). Let's look at the following

graph.

Not all the data points fall on the regression line. The amount of "error"

of the regression line is the sum of the squares of the vertical distance of

each point from the line. If all the data points fall on the best-fit line the

error would be 0. This is the ideal; most real-world data do not behave so

neatly. The method of least squares is used to calculate a line that minimizes

the error.

Given a set of points, you can find the best-fit least squares line by

solving two equations: one to calculate the slope of the best-fit line and one

to calculate its y-intercept.

In our experiment, we have the x and y coordinates of N points. W e

can use the coordinates and these two equations to find m and b\

BESTLINE 341

Nlxy — Ix m
Nix2 - (lx)2

, = ly - mix

N

The Greek letter sigma, 2 , is called summation notation; it means that

you add a set of numbers. Ix means add up all the x coordinates from the

set of points. Ixy means you should multiply the x and y coordinates of

each point and add up all the products.

Using, the Program

Here is an example of how to use BESTLINE. The text that is boldface is what

you type. Say your points are (28, 39), (25, 10), (140, 72), and (5, 2).

BESTLINE

28 39 25 10 140 72 5 2

Before plotting the line, BESTLINE prints:

When continues, it plots your points and draws the line that

best fits them.

At the bottom of the screen prints:

342 PROGRAMMING IDEAS

To find the y coordinate on the best (fit line for a certain x-100, for

example) type:

SOLVE.Y 100

Similarly, you can use a procedure called to find the x value

for a certain y.

How the Program Works

Overview

 is the top-level procedure. It sets up a global variable,

 to contain the list of points the user types in. The list of x and

y coordinates the user types is converted into a list of lists by Each

sublist contains the x and y coordinates for each point. In our example,

 is [calls

 to find the slope and the y -intercept of the line that best

fits these points. then calls to plot the points and draw

the best-fit line.

 creates two global variables, and : is the slope

of the line and is computed by is the y-

intercept and is computed by

BESTLINE 343

TO YINTERCEPT -.POINTS
OP (((BIGE : POINTS "JUSTY)

- (:M * BIGE : POI NTS "JUSTX)) / COUNT -.POINTS)
END

Both LEAST. SQUARES. SLOPE and YINTERCEPT rely on a collection of

procedures used by BIGE.

BIGE

BIGE takes two inputs, a list of points and the name of another proce-

dure. It sums the result of applying that procedure to each point in the list.*

(This procedure is called BIGE, pronounced "big-ee," because the Greek

letter 2, used as the summation symbol, looks like an upper-case "E . " For

e x a m p l e , if you type BIGE : POINTS "JUSTX, JUSTX will extract just

the x coordinate from each point in the list and BIGE will end up adding

up just the x's! BIGE : POINTS " XT I ME SY adds up the products of the x

and y coordinates for each point. The procedures used with BIGE in the

formulas are JUSTX, JUSTY, XTIMESY, and XSQUARED.

TO BIGE :LI ST :PROC
IF EMPTYP :LI ST [OP 0]
OP (SUM (RUN LIST :PROC FIRST :LI ST)

BIGE BF :LI ST :PROC)
END

TO JUSTX :POINT
OP FIRST -.POINT
END

TO JUSTY :POI NT
OP FIRST BF :POINT
END

TO XTIMESY :POI NT
OP (JUSTX :POI NT) * (JUSTY :POI NT)
END

TO XSQUARED :POI NT
OP (JUSTX :POI NT) * (JUSTX :POINT)
END

Graphing

After the equation of the best-fit line is determined, PLOT LINE plots

your points and the line. PLOT LINE first uses PLOT. POINTS to draw your

points.

*BIGE is a mapping procedure. See Brian Harvey's Map project (p.322) for more about
mapping. ,•

344 PROGRAMMING IDEAS

SS

 then draws the best-fit line. If the slope (:M) is 0, then

 draws the line. The procedure finds the smallest and

largest x and y coordinates for your set of points. finds the best-fit

line's x coordinate for the minimum y and maximum y computed by

These are the procedures for finding and plotting the endpoints of the

best-fit line.

BESTLINE 345

346 PROGRAMMING IDEAS

PROGRAM LISTING

LINES AND MIRRORS 347

TO XVALUE :Y
OP (: Y - :B) / :M
END

TO RANGE :PLIST
MAKE "MINX LEAST.NUM XLIST :PLIST
MAKE "MINY LEAST.NUM YL1ST :PLIST
MAKE "MAXX GREATEST.NUM XLIST :PLIST
MAKE "MAXY GREATEST.NUM YLI ST :PLIST
END

TO LEAST.NUM :NUMS
IF EMPTYP BF :NUMS [OP FIRST :NUMS]
IF (FIRST :NUMS) < (FIRST BF :NUMS •

) [OP LEAST.NUM SE BF BF :NUMS •
FIRST :NUMS]

OP LEAST.NUM BF :NUMS
END

TO GREATEST.NUM ;NUMS
IF EMPTYP BF :NUMS [OP FIRST :NUMS]
IF (FIRST BF :NUMS) > FIRST :NUMS •

[OP GREATEST.NUM BF :NUMS]
OP GREATEST.NUM SE BF BF :NUMS FIRST •

: NUMS
END

TO XLIST : POINTLI ST
IF EMPTYP : POINTLI ST [OP []]
OP FPUT JUSTX FIRST : POINTLIST XLIST •

BF :POINTLIST

TO YLIST : POINTLIST
IF EMPTYP : POINTLIST [OP []]
OP FPUT JUSTY FIRST :POINTLIST YLIST •

BF :POINTLI ST
END

TO PLOT.HORIZ
PU SETPOS LIST :MI NX :B
PD SETPOS LIST :MAXX :B
END

TO PAIRUP :LI ST
IF 1 = REMAINDER COUNT -.LIST 2 [MAKE •

"LIST BL : LIST]
OP PAIRS :LI ST
END

TO PAIRS :LI ST
IF EMPTYP :LI ST [OP []]
OP FPUT SE FIRST :LI ST FIRST BF :LI ST •

PAIRS BF BF :LI ST
END

Lines and Mirrors

This program was designed to simulate a beam of light bouncing off mirrors

or a ball bouncing off walls. The user enters the coordinates of endpoints

of lines. The program then draws the lines and starts the turtle going in a

random direction. When the turtle hits one of those lines, it will bounce off

at the same angle at which it came in. The turtle draws its path as it goes.

You can think of the turtle's path as a beam of light and the lines as mirrors.

In this write-up there are three main sections: first, how the program

calculates the angle at which the turtle should bounce after hitting a line;

second, how the information about the lines is remembered; and third, the

detailed structure of the program.

By Toby Mintz.

348 PROGRAMMING IDEAS

Bouncing Off a Line

What Is a Line?

You probably know that two points determine a line, as in the following

illustration.

Another way to determine a line is by its slope (m) and ^-intercept (b). The

slope is the steepness of the line. In the following figure the line on the right

rises twice as fast as the line on the left.

LINES AND MIRRORS 349

There may be many different lines with the same slope. A way to

distinguish these lines is by their y -intercept. The y -intercept is the point

at which the line crosses the y axis.

Calculating the Turning Angle

For our purposes we need a representation that tells us where the line

is and what its orientation is. (The orientation is particularly important

because the problem we are trying to solve is about directions of motion.)

These aspects of lines are reminiscent of the major components of the state

of a turtle: position and heading. This suggests that the best way to repre-

sent the orientation of a line is by the heading that a turtle would take to

draw it.

It is important for us to know the heading of a line in order to figure

out how the turtle should bounce off it. The angle at which the turtle comes

in (angle of incidence) should be the same as the angle at which it bounces

out (angle of reflection).

The angle of incidence is the amount the turtle must turn to get from its

initial heading to the heading of the line.

Y - l Y-lntercept -1

Amount
of turn

Before After

350 PROGRAMMING IDEAS

So we get

(,line's heading) — (turtle's heading)

as the angle of incidence. The angle of reflection should also be

(line's heading) — (turtle's heading)

The total amount through which the turtle turns is therefore

2 X [(line's heading) — (turtle's heading)}

Figuring Out the Heading

In fact, we are not given the heading or the position of a line. All we

are given are its two endpoints. With the two endpoints we can figure out

the slope. Then we can use the ARCTAN procedure, described in the To-

wards and Arctan project, to figure out the heading. The procedure to

figure out the heading is as follows.

(It is because Logo headings are clockwise from north, not

counterclockwise from east as in algebra.)

Figuring Out the Slope

The slope is the difference between the y coordinates of any two points

on the line divided by the difference between the x coordinates of those

points (Ay I Ax, where A stands for "difference in").

Amount of
total turn

Before After

S lope = %

LINES AND MIRRORS 351

Traditionally, a line is represented by the equation y = mx + b. Given

m and b, we can tell whether a particular point is on a particular line. For

example, if

 (m b

then we know that the turtle's position is on the line.

m of line = %
b of line = 1
YCOR = 6
XC OR = 3

(% * 3) + 1 = 6
So the point is
on the line.

W e use Ay I Ax to figure out the slope. But if the line is vertical (the two

x coordinates are the same), then the slope is infinite, so the procedure to

figure out the slope has to treat that case in a special way. The procedures

to figure out the slope (m) and y-intercept (b) of the line are as follows.

Information We Need About a Line

What information does this program need about a line?

It needs the heading for use in calculating the turning angle when the

turtle hits the line.

352 PROGRAMMING IDEAS

It uses slope and y -intercept to figure out if a position is on a line, with

the equation y = mx + b.

It also needs the endpoints. Why? So far we have been talking about

lines, which are infinitely long. Really the program has to deal with line

segments, which have two endpoints.

So we finally need five pieces of information to represent a line seg-

ment: two endpoints, heading, slope, and y -intercept.

Storing the Lines

What Each Line Looks Like

The only thing that the user gives the program is the endpoints of lines.

From this the slope, heading, and y -intercept are figured out. The program

has to have a way of storing all this information in some kind of organized

structure. It stores the five pieces of information about the line in a list of

the following format:

Here is a sample line and the list that represents it.

h

Retrieving Information About Lines

The program would get very ugly and confusing if we used that approach.

A much clearer and neater way is to have a procedure that extracts one

piece of information about a line. So we could say M to retrieve

the slope, or P 01 T 2 to retrieve the coordinates of the second

endpoint. By using these procedures, other parts of the program do not

have to know the detailed structure of a line list. The procedures also make

LINES AND MIRRORS 353

the program much easier to read and understand. Here are the information

retrieving procedures.

The List of Lines

Since the program has to keep track of a lot of lines, it stores them all

in a list called The elements of : are themselves lists, each

representing a line. For example, the border lines and the line shown

earlier would be represented as follows:

354 PROGRAMMING IDEAS

Program Structure

The top-level procedure is It has four tasks. First it creates the list

of lines. Then it sets up the initial position and shape of the turtle. The third

task is to draw the lines in the list. Finally it starts the turtle moving and

prepares to turn the turtle when it bounces off a wall. There is a subproce-

dure for each of these tasks.

Creating the List of Lines

When the program starts up, creates the list of lines. It

calls to remember the lines which the user enters. It also calls

 which remembers the border lines.

 lets the user enter lines. It calls to get each line and calls

 to add each line to the list :

 asks the user to type in the endpoints of a line segment. It calls

 to calculate the other information about the line. The output from

 is the list representing the line.

 takes the endpoints of a line segment as its input. It calls

 and to compute the slope, heading, and y -intercept of the

line.

LINES AND MIRRORS 375

 adds a line to the list of lines (:

 remembers the four lines making up the border of the screen.

Setting Up Graphics

 I selects turtle 0 and changes its shape. W e don't use

the normal turtle shape because later on we will need to know the precise

position of the turtle. The normal turtle shape is big enough that its edges

are at a very different position from the position of the center, which XCOR

and output. Instead, we use a small square dot shape.

Drawing the Lines

 draws the lines in : on the screen. The lines are

drawn with pen 1. Later, when the turtle is moving, its trajectory is drawn

with pen 0. Using a different pen for the walls allows the demon to notice

collisions with the walls and not notice collisions between the turtle and its

own earlier path.

356 PROGRAMMING IDEAS

Starting the Turtle

 positions the turtle in the center of the screen, points

it in a randomly chosen direction, and starts it moving. It also creates the

demon that waits for collisions with lines. Finally, calls

LOOP, which is explained next.

Knowing When a Line Is Hit

While the turtle is moving, continually checks if it has hit a line.

 knows the turtle has hit a line when its speed becomes zero.

How does the speed become zero? There is a demon, created by

 whose instructions include 0.

Setting the turtle's speed to zero is a convenient way for the demon to signal

to that the turtle has hit a line. W e could have changed something else

as the signal, but we had to stop the turtle anyway. Otherwise the turtle

would go through the line. Using the speed as the signal solves two prob-

lems at once.

When the speed is zero, calls to figure out which line was

hit and how much the turtle should turn.

LINES AND MIRRORS 357

Which Line Is Being Hit?

When a line is hit, calls to go through the list of lines,

finding the one that was hit. Then uses that line as the input to

 which figures out how much the turtle should turn. Finally,

 restarts the turtle and the demon.

SEARCH goes through the list of lines, looking for the one the turtle hit.

It calls the predicate for each line in the list. If outputs

 outputs the line that has been found.

How to Check a Line

The straightforward way to check if the turtle hit a certain line is to use

the equation y = mx + b, substituting the and of the turtle for

x and y. If the equation holds true, then the turtle hit that line.

There are three problems. The first problem has to do with the fact that

we are using line segments and not lines. Look at the following picture.

358 PROGRAMMING IDEAS

The turtle has hit line segment #1 . The turtle's coordinates satisfy the

equation y = mx + b for the line containing that segment. The turtle has

not hit line segment #2 . However, the line containing that segment

happens to pass through the turtle's position. Therefore, the equation

y = mx + b for that line is also satisfied. must also check to see if

the turtle is between the two endpoints of the line segment.

The second problem is that the turtle isn't actually one point; it is

slightly bigger. This means that when the edge of the turtle hits a line, the

turtle's coordinates won't match up exactly with the line's, because the

turtle's coordinates are those of its center, not those of its edge. In this

program the turtle has a square shape. If its is within seven units of

the line's y value for the turtle's we consider the turtle to be on the

line. The number seven worked out best experimentally. Larger numbers

lead to false hits. Smaller ones lead to not finding any hits at all. Our updated

version of looks like this.

The last problem is that vertical lines have an infinite slope (Ax is zero

in Ay / Ax). won't work for a vertical line, because it needs a numeric

slope. Also, we can't check to see if the turtle is between the x values of the

endpoints of the line, because the x values are the same; there is no "be-

LINES AND MIRRORS 359

tween."* So, for a vertical segment, we have to see if the of the turtle

is between the y values of the two endpoints.

Instead of calling we see if the of the turtle is within seven

units of the x value of one of the endpoints. Our final version of looks

like this.

Turning the Turtle

Once knows which line was hit, it can figure out how much

to turn the turtle. The turtle's original heading is provided the primitive

procedure HEADING. The heading of the line is provided

Recall that the angle through which the turtle should turn is therefore

 calls to figure out how much the turtle should turn:

This is not exactly true. If the turtle's XCOR is equal to the * values of the line, then in
a sense the turtle is between the r values. This doesn't mean the turtle is on the line segment.
The problem is that for a vertical line segment, the turtle's YCOR might not be between the
y values of the endpoints of the line segment, even though the XCOR is in the right range. For
diagonal lines, if one coordinate is in range, the other must also be in range.

360 PROGRAMMING IDEAS

PROGRAM LISTING

1 2 0]]

1 2 0]]

120]]

LINES AND MIRRORS 361

0 0 0 0 0 0]

