D

Music

Melodies

This section uses Atari Logo to make tunes, to combine them to make
bigger ones, and to manipulate melodic elements by playing them back-
ward and transposing them upward and downward. The section concludes
with a pitch and rhythm sequencer.

Playing a Tune

TUNE lets you play single-voice melodies. It takes two inputs, a list of
notes to play and a duration, and plays each note in the list with that
duration.

TO TUNE ;LIST :DUR
IF EMPTYP :LIST [STOP]
IF (FIRST :LIST)="R [TOOT @ 15000 © :DUR]
[TOOT @ PITCH FIRST :LIST 15 :DURI
TUNE BUTFIRST :LIST :DUR
END

The notes are represented as positive or negative integers. The letter
R in a list is interpreted as silence (that is, a rest).
Try the following melody. Type:

SETENV 0 1
TUNE [1188190198R6655331R] 30

The melody you just played is “Twinkle, Twinkle Little Star.” The ampli-
tude (loudness) of each of the notes of the melody cannot change.

Duration Using TUNE

TUNE gives the same duration to each note in the list. You might try different
durations with the same list of notes. For example:

By Greg Gargarian.

MELODIES 231

TUNE [1 3 5 1] 49 — —
) f t
or
n 1 1
TUNE [13 5 1] 29 &g—a:#:,——
S, =

The difference in these two melodies is that the first is played twice as fast
as the second.

Numeric Pitch Representation in TUNE

Here's how to translate between musical notations. Beneath each note is
the letter for the note as well as the number that TUNE uses for that note.

e

D)
A=1 Ab=2 B=3 C=4 C#=5 D=6 D$=7 E=8 F=9 F#=10 G=11 G#=12 andso forth.

The following is a melody using this notation. You see the traditional
music notation for “Twinkle, Twinkle Little Star” along with the traditional
note names. Underneath is the list of numbers TUNE uses to reproduce that
melody.

A A E E M ® BE R D D ¢ ¢ B B A R
i 1 8 B 10 106 8 R & 6

As we mentioned earlier, R is interpreted as a rest. What TUNE really
does when it sees an R is make the frequency of the note so high that you
can’t hear it! (That’s what the high frequency of 15,000 is doing in TUNE.)

Putting Melodies Together

You can give a list of notes a name. For example:

MAKE "TWINKLE1 ([1 188 10 10 8R 6 655 3 3 1R]
Now type:

TUNE :TWINKLE1l 30

You can put different melodies together. Here we will stay with “Twin-
kle, Twinkle” and make another list of notes as a continuation of the mel-
ody. Let’s give it the name TWINKLEZ2.

232

MUSIC

MAKE “TWINKLE2 [8 8 6 6 5 5 3 R]

Now type:

TUNE :TWINKLE2 39

Because this part of the melody is normally repeated, it's exactly half as long
as TWINKLE1! You can use the REPEAT command to play it twice. Type:

REPEAT 2 [TUNE :TWINKLE2 3@]

The SONG procedure combines TWINKLE1 and TWINKLEZ2 to make the
entire melody.

TO SONG :DURATION

TUNE :TWINKLE1l :DURATION

REPEAT 2 [TUNE :TWINKLE2 :DURATIONI]
TUNE :TWINKLE1l :DURATION

END

To hear it, type:

SONG 39

The tempo of SONG (that is, the rate at which the notes follow each
other) is determined by its duration input. To play SONG at a faster tempo,

type:

SONG 20

How 1une Works

TUNE goes through its list of notes, one element at a time, and plays each
note at the duration you specified. TUNE calls T00T for each note.

PITCH converts each note number in the notes list to its corresponding
frequency. P1TCH uses P1TCH1 to help.

TO PITCH :NOTENUMB
OP PITCH1 :NOTENUMB 220
END

TO PITCH1 :NOTENUMB :BASE

IF :NOTENUMB = @ [OP INT :BASE]

IF :NOTENUMB > 12 [OP PITCH1 :NOTENUMB-12 :BASE"*2]

I[F :NOTENUMB < @ [OP PITCH1 :NOTENUMB+12 :BASE/2]
[OP PITCH1 :NOTENUMB - 1 :BASE®1.0595]

END

The note in this program is A at frequency 220. The A an octave above
it has a frequency of 440. In fact, frequencies of notes an octave apart are

MELODIES

always related to each other in this way: going an octavehigher doubles the
frequency, going an octave lower halves the frequency. The variable : BASE
is doubled or halved to perform this octave-changing function.

There are twelve chromatic steps in an octave. Therefore, the fre-
quency of each note in the scale is the twelfth root of two higher than the
next. Multiplying a note by 1.0595 gets the next note in the scale. The
chromatic steps in between the octaves are determined by multiplying
:BASE by 1.0595 n times, where n is the number of chromatic steps.

TUNE's note numbers start at a frequency of 220. That A is 1, and all
the notes in the scale go up or down from there.

Symmetry in Melodies

One way to listen to the characteristics of a melody is to hear it backward.
(This is similar to the kind of analysis sometimes done in a painting class.
People will often look at a painting sideways or upside down in order to
concentrate on the shapes and colors rather than the figures themselves.)

TO REVERSE :LIST

IF EMPTYP :LIST [OP []]

OP FPUT LAST :LIST REVERSE BL :LIST
END

You use REVERSE to put a list of notes in reverse order. Try it by typing:
PRINT REVERSE [1 3 5 6]

You should get:
6531

as your result. You can compare the sound of a list of notes forward and
backward using TUNE with and without REVERSE. Type and listen to the
following:

TUNE [1 3 5 6] 39

To hear the reverse of it, type:

TUNE REVERSE [1 3 5 6] 39
Also try:

TUNE :TWINKLE1 39
TUNE REVERSE :TWINKLE1l 39

You can use REVERSE to build a symmetrical melody from a short one.
The procedure MUSIC.MIRROR takes a list of notes and plays it in the given
order, then plays it in reverse order. (By the way, this reversing process is
usually called taking the retrograde of the phrase.)

TO MUSIC.MIRROR :LIST :DUR
TUNE :LIST :DUR

TUNE REVERSE :LIST :DUR
END

233

MUSIC

Listen to the following examples, the first using our four-note phrase
and the second using the tune list : TWINKLE1.

MUSIC.MIRROR [1 3 5 6] 30
MUSIC.MIRROR :TWINKLE1l 39

In the next example, we construct a substantial melody with only two
four-note phrases. We use the same four notes played before and make up
another melody. Type the following:

;#.E MAKE “TUNE1 [1 3 5 6]

MAKE “TUNE2 [1 5 8 8]

Now we put these two melodies together in the procedure SONG1.

TO SONG1
REPEAT 2 [MUSIC.MIRROR :TUNE1l 35 MUSIC.MIRROR :TUNE2 35]
END

Play it by typing:
SONG1

With eight notes we have been able to construct a twenty-four-note
song! Try other melodies of your own design.

Transposing a Melody

A melody has a certain shape or contour that can be preserved regardless
of the pitch at which the melody starts. If you add or subtract a musical step
(or several steps) from each note in a melody, you don’t change its overall
shape. This process of raising or lowering all the notes equally is called
transposing.

Transposing Up

TRANSPOSE .UP transposes all the notes of a phrase up. TRANSPOSE.UP
works by adding its second input to each of the numbers in its input list.
Try:

TUNE TRANSPOSE.UP [1 3 5 6] 2 30
This is equivalent to typing:

TUNE [3 5 7 8] 30

TO TRANSPOSE.UP :LIST :INT

IF EMPTYP :LIST [OP [1]]

0P FPUT (FIRST :LIST) + :INT TRANSPOSE.UP BF :LIST :INT
END

MELODIES

Listen to the difference between the list, before and after it has been
transposed up.

Type:

TUNE (1 3 5 6] 39 E e “

e
and then
N 3
TUNE TRANSPOSE.UP [1 3 5 61 2 39 @.—_ﬁlzii
D)

An Effect Using TRANSPOSE . UP

CLIMB and CLIMBING use TRANSPOSE.UP to create the effect of a tune
climbing. CLIMBING takes a list of notes as its first input and transposes it
up step by step as many times as you want. The number of steps is CLIMB’s
second input.

Try:

CLIMB :TUNE1l 3
CLIMB :TUNE2 7
CLIMB :TUNE3 5

TO CLIMB :NOTELIST :TIMES
CLIMBING :NOTELIST :TIMES @
END

T0 CLIMBING :NOTELIST :TIMES :UP
IF :TIMES = :UP ([STOP]

TUNE TRANSPOSE.UP :NOTELIST :UP 35
CLIMBING :NOTELIST :TIMES :UP+1
END

Transposing Down

TRANSPOSE . DOWN is similar to TRANSPOSE . UP except that the melody is
transposed down.

TO TRANSPOSE.DOWN :LIST :INT
IF EMPTYP :LIST [OP ([])

OP FPUT (FIRST :LIST) - :INT TRANSPOSE.DOWN BF :LIST :INT
END

Type:
MAKE “TUNE3 (5 8 6 5]

Then listen to each of the following:
TUNE :TUNE3 30

TUNE TRANSPOSE.DOWN :TUNE3 1 30
TUNE TRANSPOSE.DOWN :TUNE3 3 30

235

236

SEQUENCER (6

SETENV 0 1

MUSIC

A Single-Voice Music Sequencer

A music sequencer is an instrument that will repeat a sequence of notes for
an indefinite period of time. We can make one by modifying TUNE.

TO SEQUENCER :LIST :DUR
IF EMPTYP :LIST [STOP]
IF (FIRST :LIST) = "R [TOOT 0 15008 15 :DUR]
[TOOT @ PITCH FIRST :LIST 15 :DUR]
SEQUENCER (SE BUTFIRST :LIST FIRST :LIST) :DUR
END

Type:
0N

5311 39 Wﬁ:

D)

Press BREAK to stop.

The big difference between TUNE and SEQUENCER is that SEQUENCER
repeats your tune over and over. It won't stop until you press BREAK. In
TUNE, the first note is played, then removed on the recursive call.

Short Durations

If the duration of the notes gets very short, you may want to change the
“envelope” of the voice—that is, the rate at which the sound goes to silence
(or decays) after its duration has been expended. This prevents a note from
“spilling” into the next note.

SETENV’s first input determines the voice. Since we’re using voice 0 in
SEQUENCER, the first input to SETENV should be 0. It’s the second input to
SETENV that determines the decaying time for the note. Try SETENV 0
1, which is a quick decay.

Type:

SETENV 0 1
SEQUENCER [6 5 3 1] 39

Try other values. To restore SETENV values, type:
SETENV 0 @
A Single-Voice Rhythm Sequencer

RHYTHM. SEQ is a single-voice rhythm sequencer that makes bongolike
sounds. This procedure expects its list of notes to include only the letters
H,M, and L (for high, medium, and /ow) and R (for rest). Type the following
two lines and listen to the result, pressing BREAK to stop.

RHYTHM.SEQ [H M L L H] 19 {}JJIIJJJ| |JJJ||
L

MELODIES

Press BREAK to stop.
The second input is the duration for each of the notes in the list.

TO RHYTHM.SEQ :LIST1 :DUR

IF EMPTYP :LIST1 [STOPI

IF EQUALP FIRST :LIST1 “R [TOOT ©® 15000 © :DUR]
[TOOT @ BONGO FIRST :LIST1 15 :DUR]

RHYTHM.SEQ (SE BUTFIRST :LIST1 FIRST :LIST1) :DUR

END

Traditionally speaking, rhythm usually implies periodic or repeating
patterns. The list of elements that you have given RHYTHM. SEQ becomes
such a pattern as it continues to repeat. For example, type:

RHYTHM.SEQ [L M H R R] 29

This is a five-beat pattern that gets its rhythm from the sequencing
action alone.

A second way to produce rhythmic patterns is to use rests in different
ways. Since RHY THM. SEQ doesn’t have many notes, you can concentrate on
how far apart to space them in time. For example, type:

RHYTHM.SEQ [L R M H R ML R MHI 20

This has an internal feeling of three (waltzlike), yet it is a ten-beat
pattern. Both rhythms seem to coexist.

A third way in which to construct patterns is with the low, medium, and
high pitches. They can be used to either reinforce the existing patterns or
they can serve as counterpoint to them. For example, type:

RHYTHM.SEQ (LM H R LMH L R H] 20
H

e

This rhythm reinforces the patterns of the previous ten-beat pattern by
repeating the low-medium-high sequence almost three times (there’s a rest
in the middle of one of them) and by adding an additional rest between one
of these repetitions to get the ten-beat phrase. Try the previous rhythmic
sequences at a faster tempo by typing:

RHYTHM.SEQ (LR M H R ML R MH] 19
RHYTHM.SEQ (LM HR L MH L R H] 19

How ruYTHM. sEq Works

RHYTHM. SEQ was designed by modifying SEQUENCER. The most conspicuous
difference is that RHYTHM. SEQ uses a procedure called BONGO instead of
PITCH to produce the T00T frequencies.

TO BONGO :NOTE

IF :NOTE “L [OP (59 + RANDOM 3)]

IF :NOTE “M [OP (74 + RANDOM 3)]

IF :NOTE = “H [OP (87 + RANDOM 3)] [OP 150001
END

237

238 MUSIC

BONGO interprets L, M, and H for RHYTHM. SEQ. It interprets R (and any
other character) as a rest by outputting (0P) an inaudible frequency of
15,000

As in SEQUENCER, if the rhythm is very fast, the second input to SETENV
should be very small so that there is separation between notes.

Notice that the frequencies for L, M, and H are small numbers and, thus,
relatively low notes. These frequencies will change slightly each time de-
pending on the tiny RANDOM values that are added to them. This has been
done to make the sounds more bongolike and less, for example, pianolike
—that is, less “pitchy.”

PROGRAM LISTING

TO TUNE :LIST :DUR TO SONG1
IF EMPTYP :LIST [STOP] REPEAT 2 [MUSIC.MIRROR :TUNEl 35 »
IF (FIRST :LIST)="R [TOOT 0 15000 @ » MUSIC.MIRROR :TUNE2 35]
:DUR] [TOOT @ PITCH FIRST :LIST » END
15 :DUR]
TUNE BUTFIRST :LIST :DUR TO TRANSPOSE, UP :LIST :INT
END IF EMPTYP :LIST (OP [1]]
OP FPUT (FIRST :LIST) + :INT »
TO SONG :DURATION TRANSPOSE.UP BF :LIST :INT
TUNE :TWINKLE1 :DURATION END
REPEAT 2 [TUNE :TWINKLE2 :DURATION]
TUNE :TWINKLE1 :DURATION T0 CLIMB :NOTELIST :TIMES
END CLIMBING :NOTELIST :TIMES o
END
TO PITCH :NOTENUMB
OP PITCHL :NOTENUMB 229 TO CLIMBING :NOTELIST :TIMES :UP
END IF :TIMES = :UP [STOP]
TUNE TRANSPOSE.UP :NOTELIST :UP 35
TO PITCH1 :NOTENUMB :BASE CLIMBING :NOTELIST :TIMES :UP+1
IF :NOTENUMB = @ [(OP INT :BASE] END
IF :NOTENUMB > 12 (OP PITCH1 »
:NOTENUMB-12 :BASE*2] TO TRANSPOSE.DOWN :LIST :INT
IF :NOTENUMB < © [OP PITCHLI » IF EMPTYP :LIST [OP []]
:NOTENUMB+12 :BASE/2] [OP PITCH1 » OP FPUT (FIRST :LIST) = :INT »
:NOTENUMB - 1 :BASE*1.0595] TRANSPOSE .DOWN BF :LIST :INT
END END
TO REVERSE :LIST TO SEQUENCER :LIST :DUR
IF EMPTYP :LIST [OP [1] IF EMPTYP :LIST (STOP]
OP FPUT LAST :LIST REVERSE BL :LIST IF (FIRST :LIST) = "R [(TOOT 9 15000 15 »
END :DUR] [TOOT @ PITCH FIRST :LIST »
15 :DUR]
TO MUSIC.MIRROR :LIST :DUR SEQUENCER (SE BUTFIRST :LIST FIRST »
TUNE :LIST :DUR :LIST) :DUR
TUNE REVERSE :LIST :DUR END

END

EAR TRAINING 239

TO RHYTHM.SEQ :LIST1 :DUR TO BONGO :NOTE

IF EMPTYP :LIST1 [STOP] IF :NOTE = “L [OP (59 + RANDOM 3)1]

IF EQUALP FIRST :LIST1 "R [TOOT @ » IF :NOTE = “M [OP (74 + RANDOM 3)]
15000 ® :DUR] [TOOT @ BONGO FIRST » IF :NOTE = “H [OP (87 + RANDOM 3)] [QOP »
:LIST1 15 :DUR] 150001

RHYTHM.SEQ (SE BUTFIRST :LIST1 FIRST » END
:LIST1) :DUR

END

Ear Training

This project is an interactive music tutorial in ear training. It gives you the
opportunity to listen to musical intervals and learn to recognize them.

How to Use the Ear Training Tutorial

The program picks two notes at random to construct a musical interval.
Your task is to hear the interval and to select what you think it is. The
program will tell you if you are right or give you the correct answer.

The program selects intervals within roughly one octave. They are
shown here in traditional musical notation, with a written description, and
with the abbreviated notation this program uses.

0
.- I
e —ew—— o
minor second major second minor third major third
MINOR 2 MAIJOR 2 MINOR 3 MAJOR 3
0N
é be = . T —
. — B — [=
- perfect fourth augmented fourth perfect fifth minor sixth
PERF. 4 AUG. 4 PERF. 5 MINOR 6
0 ~ — 1 e O ——
% = —— =
major sixth minor seventh major seventh octave
MAJOR 6 MINOR 7 MAJOR 7 OCTAVE

By Greg Gargarian.

MUSIC

Running the Program

Those of you who feel bold can run the tutorial without reading this section.
Type:
EAR.TRAINING

The following is a step-by-step description of how to use the program.
The program prints out the following instructions.

THIS PROGRAM PLAYS A NOTE

THEN ANOTHER. ..

...AND ASKS YOU FOR THE PITCH-
INTERVAL BETWEEN THEM.

FOR EXAMPLE, IF THE FIRST NOTE IS:

(a sound here)

AND THE SECOND IS:

(a sound here)

THE INTERVAL BETWEEN THEM IS A PERF.4

THE POSSIBLE INTERVALS ARE:

MINOR.2 MAJOR.2 MINOR.3
MAJOR.3 PERF.4 AUG.4
PERF.5 MINOR.& MAJOR.6
MINOR.7 MAJOR.7 OCTAVE
MINOR.9 MAJOR.9 MINOR.190
MAJOR. 10

HERE WE GO

Then the program gives you two notes and states:

TYPE ? AND RETURN FOR THE INTERVAL,
GIVE YOUR OWN ANSWER OR
PRESS RETURN FOR ANOTHER HEARING

Let's say you type:
MAJOR. 6
There are two possibilities: either you are right, in which case it re-

sponds:
TRUE

or you are wrong, in which case it responds:
FALSE. THE RIGHT ANSWER IS: whatever
If you had typed ? and RETURN the program would have informed

you of the interval you had just heard.
The program then gives you instructions.

EAR TRAINING 241

PRESS RETURN TO CONTINUE, OR
ANY CHARACTER AND RETURN TO STOP.

Pressing RETURN gives you a new interval. If, when you hear an
interval, you are not sure of the answer, you may listen a second time. When
the program states:
TYPE ? AND RETURN FOR THE INTERVAL,
GIVE YOUR OWN ANSWER OR
PRESS RETURN FOR ANOTHER HEARING
pressing RETURN causes the same interval to be repeated, this time with
the notes played together as well as one after the other.

PROGRAM LISTING
TO EAR.TRAINING PRINT (]
CT WAIT 189
PRINT [THIS PROGRAM PLAYS A NOTE,]) EAR.TRAINING2
WAIT 60 END
PRINT [THEN ANOTHER...]
WAIT 120 TO EAR.TRAINING2
PRINT [...AND ASKS YOU FOR THE PITCH-] CcT
PRINT [INTERVAL BETWEEN THEM.] PRINT [IF THE FIRST NOTE 1S:]
WAIT 189 MAKE "BASE (RANDOM &) + 1
PRINT [] WAIT 30
PRINT [] TOOT @ PITCH :BASE 15 60
PRINT [FOR EXAMPLE, IF THE FIRST NOTE » WAIT 129
I5:] PRINT [AND THE SECOND 1S:1]
T00T @ PITCH 2 15 6@ MAKE “INTERVAL (RANDOM 16) + 1
WAIT 120 WAIT 30
PRINT [AND THE SECOND [S:] TOOT @ PITCH :BASE + :INTERVAL 15 60
WAIT 60 WAIT 60
TOOT @ PITCH 7 15 60 PRINT []
WAIT 180 PRINT [TYPE ? AND RETURN FOR THE »
PRINT [THE INTERVAL BETWEEN THEM IS A » INTERVAL,]
PERF.4] PRINT [GIVE YOUR OWN ANSWER OR]

WAIT 100 PRINT [PRESS RETURN FOR ANOTHER »
PRINT [] HEARING.]
PRINT [] CHECK.ANSWER :BASE :INTERVAL RL
PRINT [THE POSSIBLE INTERVALS ARE:) TRY.AGAIN
PRINT [] END
PRINT [MINOR.2 MAJOR.2 MINOR.3]
PRINT [MAJOR.3 PERF.4 AUG.4] TO CHECK.ANSWER :BASE :INTERVAL :ANS
PRINT [PERF.5 MINOR.6 MAJOR.6] IF EMPTYP :ANS (ANOTHER.HEARING :BASE »
PRINT [MINOR.7 MAJOR.7 OCTAVE] :INTERVAL STOP]
PRINT [MINOR.9 MAJOR.9 MINOR.10] IF (FIRST :ANS) = “? [PRINT (SE [THIS »

PRINT [MAJOR.10]
WAIT 249

PRINT []

PRINT [HERE WE GO]

INTERVAL IS Al INTERVALS »

:INTERVAL) WAIT 68) [CHECKLIST »

:INTERVAL FIRST :ANS]
END

242 MUSIC

TO CHECKLIST :INTERVAL :ANS TOOT 1 PITCH :BASE + :INTERVAL 15 90
IF (INTERVALS :INTERVAL) = :ANS [PRINT » PRINT []
TRUE] [PRINT (SE [(FALSE. THE » PRINT [TYPE ? AND RETURN FOR THE »
RIGHT ANSWER IS:]1 INTERVALS » INTERVAL,]
: INTERVAL] PRINT [GIVE YOUR OWN ANSWER OR])
WAIT 60 PRINT [PRESS RETURN FOR ANOTHER »
END HEARING.]
CHECK.ANSWER :BASE :INTERVAL RL
TO INTERVALS :NUMBER END
0P ITEM :NUMBER [MINOR.2 MAJOR.2 »
MINOR.3 MAJOR.3 PERF.4 AUG.4 » TO TRY.AGAIN
PERF.5 MINOR.6 MAJOR.6 MINOR.7 » PRINT []
MAJOR.7 OCTAVE MINOR.9 MAJOR.9 » PRINT [PRESS RETURN TO CONTINUE, OR]
MINOR.10 MAJOR.1@] PRINT [ANY CHARACTER AND RETURN TO »
END STOP.]
IF EMPTYP RL [EAR.TRAINING2]
TO ITEM :NUM :LIST END
IF :NUM=1 [OP FIRST :LIST]
OP ITEM :NUM-1 BF :LIST TO PITCH :NOTENUMB
END OP PITCH1I :NOTENUMB 220
END
TO ANOTHER.HEARING :BASE :INTERVAL
PRINT (1
PRINT [TOGETHER, THE NOTES ARE:] TO PITCH1 :NOTENUMB :BASE
WAIT 60 IF :NOTENUMB = @ [OP INT :BASE]
TOOT @ PITCH :BASE 15 120 IF :NOTENUMB > 12 [OP PITCH1 »
TOOT 1 PITCH :BASE + :INTERVAL 15 990 :NOTENUMB-12 :BASE*2]
WAIT 120 IF :NOTENUMB < © [OP PITCH1 »
PRINT [AGAIN, THE FIRST NOTE 1S:] :NOTENUMB+12 :BASE/2] [OP PITCH1 »
TOOT @ PITCH :BASE 15 129 :NOTENUMB - 1 :BASE*1.0595]
PRINT [AND THE SECOND:] END

Sound Effects

This write-up presents a palette of sound effects to give you ideas for using
sound in your own projects. We've kept our discussion brief. Instead, we ask
you to use your ears. Some of these sound effects are new, others are taken
from projects found elsewhere in this book. You might want to try them out
and use those effects you like in your own projects, either as they are or in
modified form. The procedures in this collection use the Atari Logo music
primitives TO0T and SETENV.

A European Ambulance Siren

Typing the following lines results in a European ambulance sound.

By Greg Gargarian and Margaret Minsky; with contributions by Max Behensky.

SOUND EFFECTS

SETENV 0 19
REPEAT 19 ([TOOT @ 267 15 49 TOOT @ 200 15 391)

Advancing and Retreating Sounds

The procedures ADVANCE and RETREAT make sounds like something is rush-
ing toward you or retreating from you. When sound sources advance to-
ward you, you hear their pitch rising slightly and their volume increasing.
When they retreat, you hear a falling pitch and decreasing volume. That
is what these procedures try to do.

ADVANCE and RETREAT take two inputs. The first is a starting pitch for
their sound and the second is FAST or SLOW for the speed of the advance
or retreat. These procedures make sounds in both voice 0 and voice 1.

Here are the procedures for ADVANCE.

TO ADVANCE :PCH :DURATION

IF :DURATION = “FAST [ADVANCE1l :PCH 1]
IF :DURATION = "SLOW [ADVANCE2 :PCH 5]
END

TO ADVANCE1l :PCH :AMP

IF :AMP > 15 [STOP]

TOOT @ :PCH :AMP 5

TOOT 1 :PCH*1.91 :AMP 5
ADVANCE1 :PCH*1.01 :AMP + 3
END

TO ADVANCE2 :PCH :AMP

IF :AMP > 15 [STOP]

TOOT @ :PCH :AMP 5

TOOT 1 :PCH*1.81 :AMP 5
ADVANCE2 :PCH*1.01 :AMP + 1
END

Try:

SETENV @ 1
ADVANCE 449 "SLOW
ADVANCE 449 “FAST

Here are the procedures for RETREAT.

TO RETREAT :PCH :DURATION

IF :DURATION = "FAST [RETREAT1 :PCH 15]
IF :DURATION = “SLOW [RETREAT2 :PCH 15]
END

TO RETREAT1 :PCH :AMP

IF :AMP < @ [STOP]

TOOT @ :PCH :AMP 5

TOOT 1 :PCH*.99 :AMP 5
RETREAT1 :PCH*®*.99 :AMP - 3
END

243

244

MUSIC

TO RETREAT2 :PCH :AMP

IF :AMP < @ [STOP]

TOOT @ :PCH :AMP 5

TOOT 1 :PCH*®*.99 :AMP 5
RETREAT2 :PCH*®*.99 :AMP - 1
END

Try:

RETREAT 440 "FAST
RETREAT 440 “SLOW

You might want to try some other inputs.

ADVANCE 1009 “FAST
ADVANCE 100 “SLOW
RETREAT 209 "SLOW

You can try putting them together.
REPEAT 10 [ADVANCE 2@Q“SLOW RETREAT 219 "FAST WAIT 10]
This one sounds like a monster snoring.

REPEAT 5 [ADVANCE 99 “FAST RETREAT 95 “SLOW WAIT 10]

Making Sliding Sounds: Glissandi

The RAMP procedure makes a sound that slides “smoothly” from a starting
pitch to an ending pitch.

TO RAMP :START :FINISH :RATE

IF :FINISH < :START [REPEAT (:START-:FINISH)/ :RATE
[TOOT 1 :START 15 2 MAKE “START :START - :RATEI]]

IF :START < :FINISH [REPEAT (:FINISH-:START)/ :RATE
[TOOT 1 :START 15 2 MAKE “START :START + :RATE]]

END

Try:

RAMP 400 1000 20
RAMP 1000 409 20
RAMP 300 500 70
RAMP 100 800 40

You get the idea. The first input is the starting frequency, the second
is the ending frequency, and the third determines the rate of the slide. The
bigger the third input, the faster the slide.

Try:

RAMP 500 700 4
RAMP 500 700 49

SOUND EFFECTS
This one makes a “whooping™ sound:

REPEAT 5 [RAMP 409 809 49)

A Motorcycle Sound

MOTORCYCLE uses RAMP to make the motorcycle warm up and ADVANCE and
RETREAT to make it drive away.

TO MOTORCYCLE

REPEAT 10 [RAMP 25 120 (RANDOM 18)+1]
ADVANCE 50 “SLOW

RETREAT 50 “SLOW

END

A More Continuous Sliding for an Ambulance Siren

RAMP 2 is a more complicated procedure that makes a more continuous slide.
It can be used to make the sound of an ambulance siren.

TO RAMP2 :START :FINISH :RATE
IF :FINISH < :START

[DOWN :START :FINISH :RATE TOOT @ :FINISH 12 6]
IF :FINISH > :START

[UP :START :FINISH :RATE TOOT @ :FINISH 12 6]
END

T0: e 28 :F :R
REPEAT (:F - :S) [/ :R

[TOOT 1 :S 15 4 WAIT 1 TOOT @ :S 12 4 MAKE “S :S + :RI
END

TO DOWN :S :F :R
REPEAT (:S - :F) [/ :R

[TOOT 1 :S 15 4 WAIT 1 TOOT @ :S 12 4 MAKE “S :S - :R]
END

Try:

REPEAT 10 [RAMP2 1209 1609 25 RAMP 1609 1209 25)

A Spaceship Sound

DEPARTURE uses RAMP in voice 1 and holds the starting pitch of the RAMP in
voice 0.

TO DEPARTURE :FIRST :LAST :RATE

IF 255 < (ABS (:FIRST-:LAST)/:RATE)=2 [TOOT @ :FIRST 12 255]
[TOOT @ :FIRST 12 (ABS (:FIRST-:LAST)/:RATE)*2]

RAMP :FIRST :LAST :RATE

END

245

246

MUSIC

TO ABS :NUM
IF :NUM < @ [OP —:NUM] [OP :NUM]
END

Try DEPARTURE:

SETENV ¢ 8
SETENV 1 8
DEPARTURE 209 50 5
DEPARTURE 509 50 19

For a zigzag sound, try the following:
REPEAT 2 [DEPARTURE 10¢@ 509 2@ DEPARTURE 500 1090 20)
For a spaceshiplike sound, try:

TO SPACE.SHIP :NUM
REPEAT :NUM [DEPARTURE 1500 2000 29)
END

Try:
SPACE.SHIP 5
or

SPACE.SHIP 2

A Boing-ng-ng Sound

BOING works best in the low register . . . boings usually do!
BOING's first input is the frequency of the boing and the second input
is the duration (in sixtieths of a second).

T0O BOING :FR :DUR

SETENV @ 0

SETENV 1 @

IF :DUR > 10@ [BOING1 15 1.5 :FR :FR/20¢ (:DUR/10) STOP]
BOINGl 15 3 :FR :FR/2® (:DUR/5)

END

TO BOING1 :AMP :INC :FR :FR1 :DUR

IF :AMP < 1 [STOP]

TOOT @ :FR :AMP :DUR

TOOT 1 :FR - (:FR / 40) :AMP :DUR

BOING1 :AMP - :INC :INC (:FR + :FR1) :FR1 :DUR
END

Try:

BOING 209 49
REPEAT 5 [BOING 5@ 30]

SOUND EFFECTS
Trills and Thrills

The TRILL procedure plays a “trill” (a sound made up of alternating
sounds). TRILL's first input is a frequency, the second input the interval, and
the third is the number of times to alternate.

TO TRILL :FREQ :STEPSIZE :TIMES
REPEAT :TIMES [TOOT © :FREQ 15 5

TOOT @ :FREQ*STEPVALUE :STEPSIZE 15 5]
END

TO STEPVALUE :STEP

IF :STEP<2 [0P 1.0595]
IF :STEP=2 [OP 1.1225]
IF :STEP=3 [OP 1.1893]
IF :STEP=4 [OP 1.261
IF :STEP=5 [0P 1.335]
IF :STEP=6 [OP 1.4145]
IF :STEP=7 [OP 1.4987]
IF :STEP=8 [OP 1.5878]
IF :STEP=9 [OP 1.6823]
IF :STEP=19 [0P 1.7824)
IF :STEP=11 [0P 1.888]
IF :STEP=12 [0P 2]

OP 2*STEPVALUE :STEP-12
END

Try:

TRILL 400 3 4
TRILL 499 3 8
TRILL 209 3 8
028
918

TRILL 20

More with Trill

AGITATION is a procedure that uses TRILL to make trills of decreasing
stepsize.

TO AGITATION :FREQ :NUMB

IF :NUMB < 1 [TOOT @ :FREQ 5 30 STOP]
TRILL :FREQ :NUMB 4

AGITATION :FREQ :NUMB-1

END

Try:

AGITATION 209 4

AGITATION 1000 8

AGITATION 660 48

REPEAT 3 [AGITATION 5¢ 4]
REPEAT 2 [AGITATION 2090 3]

247

MUSIC

Bird Sounds

BIRDSONG amd BIRDSONG1 are two different kinds of bird sounds.
BIRDSONG uses RAMP to make a short and upward-gliding sound at a high
frequency.

TO BIRDSONG

RAMP 1019 1070 10
WAIT (RANDOM 18)+1
END

TO BIRDSONG!

TRILL 1200 2 1
TRILL 1010 2 1
WAIT (RANDOM 10)+1
TRILL 1133 1 1
TRILL 801 2 1

WAIT (RANDOM 10)+1
END

Try:
BIRDSONG

BIRDSONG1 uses several short calls of TRILL to make a nervous-jumping
bird sound.
Try:

BIRDSONG1
Bird Music

BIRDS makes a birdlike song using BIRDSONG and BIRDSONG1. To create
variety BIRDSONG and BIRDSONG1 are played alternately, each a random
number of times.

T0 BIRDS

REPEAT (RANDOM 3)+1 [BIRDSONG]
WAIT (RANDOM 12)+1

REPEAT (RANDOM 3)+1 [BIRDSONG1]
WAIT (RANDOM 12)+1

BIRDS

END

Listen to it by typing:
BIRDS
Press the BREAK key to stop!

Sound for Jack and Jill

FANFARE is the music finale to the Jack and Jill project found in this book.

SOUND EFFECTS

TO FANFARE

FANFARE1 55 110 70490

FANFARE1 35 70 7049

FANFAREL 30 60 7040

FANFAREL1 25 50 7040

FANFAREL 30 50 7680

FANFARE1 120 200 76890

SETENV @ 15 SETENV 1 15

TOOT © 240 15 249 TOOT 1 400 15 249
END

TO FANFARE1l :FRO :FR1 :HIGHFR

IF :FR® > :HIGHFR [STOP]

TOOT @ :FR® 15 1@ TOOT 1 :FR1 15 7
FANFARE1 :FR@*2 :FR1*2 :HIGHFR

END

Try:
FANFARE
Since FANFARE does SETENVs, you might want to restore by saying:

SETENV 0 0
SETENV 1 @

Playing with se1env and Amplitudes

BOUNCE makes a ping-ponglike bouncing sound.
BOUNCE's.input is for the frequency. As the BOUNCE note gets faster, its
amplitude gets quieter and, near the end, its envelope gets shorter.

TO BOUNCE :FREQ
SETENV 0 1

BOUNCE1 :FREQ 15 40
END

Try:

BOUNCE 449
BOUNCE 100
REPEAT 5 [BOUNCE (RANDOM 490)+199]

You can shorten the longer durations of the bounce by lowering the
duration input to BOUNCE1 (that is, by changing 40 to a smaller number).

TO BOUNCE1 :FREQ :AMP :DUR

IF :AMP < 1 [MAKE "AMP ABS :AMP]

IF :DUR < 1 [FASTBOUNCE :FREQ STOP]
TOOT © :FREQ :AMP 10

WAIT :DUR

BOUNCEl :FREQ :AMP-1 :DUR-(15-:AMP)
END

249

MUSIC

You can shorten the tail of the bounce by lowering the input to REPEAT
in FASTBOUNCE,

TO FASTBOUNCE :FREQ

SETENV 0 ©

REPEAT 10 [TOOT @ :FREQ 2 5 WAIT 5]
END

An Echo Effect

ECHO is similar to BOUNCE, but ECHO doesn’t get faster as it gets quieter. It
uses SETENV to gradually change the decay of the repeating notes and
RANDOM to produce the frequency, starting envelope, and pulsing rate of the
echoed note.

TO ECHO

ENDING (RANDOM 80@)+50 RANDOM 7 (RANDOM 15)+8
ECHO

END

TO ENDING :FR :DECAY :RATE

IF :DECAY=0 [ENDING1 :FR 15 :RATE STOP]
SETENV 0 :DECAY

TOOT @ :FR 15 :RATE

ENDING :FR :DECAY-1 :RATE

END

TO ENDING1 :FR :AMP :RATE
IF :AMP=p [STOP]
TOOT © :FR :AMP :RATE

ENDINGI :FR :AMP-1 :RATE
END

Try:

ENDING 400 2 25
ENDING 100 1 19

Now type:
ECHO

Press BREAK to stop!

NAMING NOTES

Naming Notes

In the Melodies project, notes are represented by numbers that are later
converted to appropriate frequencies. It takes time to do this for each note.
If you want to play notes very rapidly one after the other, you can use
another technique described in this project. The idea is to precompute the
frequencies that correspond to the notes. In this project, we do this by
giving names to these frequencies. The names we chose in this project come
from traditional music notation, for example A#4, which represents the
A-sharp in the fourth octave of piano pitches. We might make this a name
by doing

MAKE “A#4 466

Thereafter (as in the Argue program) you can use THING to refer
quickly to the frequency of a note. For example, if :NOTE is A#4, then
THING :NOTE is 466. Using this scheme, your music procedures would
contain lines like

TOOT @ THING :NOTE 15 29

You might have to name a lot of notes. This means there will be a lot
of variables, and they will use up quite a bit of Logo's workspace. Sometimes
it is worth it.

This project shows a program that automatically creates note names
like A#4 and figures out the right frequencies. It does this for several oc-
taves.*

Naming Notes

This program uses the naming technique just described to allow fast sym-
bolic access to musical notes. The names follow a convention similar to
standard music notation where, for example, G3 would be the name for G
in the third piano octave.

Some examples:

MAKE "G3 392
MAKE "G#3 415

MAKE "A4 4490
MAKE "A#4 466
MAKE "B4 493

Since we want to have names like these for many notes, we create
procedures that automatically calculate and name frequencies.

*It is nice to use names like A#4, but the same technique can work with numbers (or
anything else) as the names of variables for the notes. The main advantage of this project’s
technique is the use of variables for fast access to precomputed values. You could, for example,
do MAXE 38 466 to give the name 38 to the frequency 466.

By Max Behensky and Margaret Minsky,

251

252

MUSIC

Procedures for Naming Notes

NAMENOTES calls NAMEOCTAVES, which calls NAMEOCTAVE, to name the
notes in each octave. NAMENOTES also names the special “note” R so that it
represents a rest.

TO NAMENOTES

MAKE "R 15000

NAMEOCTAVES [A A# B C C# D D# E F F# G G#] 1 55
END

NAMEOCTAVES takes three inputs: a list of prefixes for the names of notes
(LA A# B C C# D D# E F F# G G#1), the starting suffix that is the
number of the lowest octave for which names are to be created, and the
frequency of the lowest pitch in that octave (the A of that octave).

TO NAMEOCTAVES :NAMES :0CTAVE :STARTFREQ

IF :0CTAVE > 8 [STOP]

NAMEOCTAVE :NAMES :0CTAVE :STARTFREQ
NAMEOCTAVES :NAMES :OCTAVE + 1 :STARTFREQ * 2
END

NAMEOCTAVES calls NAMEOCTAVE to make the variables for each octave.
Each note name is created (in NAMEOCTAVE) by making a new word out of
the appropriate prefix and the octave number. Then NAMEOCTAVES updates
the octave number and the lowest frequency for the next octave. This
continues until eight octaves of pitches have been named.

In NAMEOCTAVE the twelfth root of two is used in the following formula
to compute the frequency of a note one half-step above another.

(frequency of a note) X (twelfth root of 2) = (frequency of next note)

TO NAMEOCTAVE :NAMES :QCTAVE :FREQ

IF EMPTYP :NAMES [STOP]

MAKE (WORD FIRST :NAMES :0CTAVE) :FREQ
NAMEOCTAVE BF :NAMES :0CTAVE :FREQ * 1.0595631
END

Playing Melodies with Named Notes

Run NAMENOTES to create the note variables. Now you can use a procedure
such as PLAYTUNE to play a melody.

TO PLAYTUNE :LIST

IF EMPTYP :LIST [STOP]

TOOT @ THING FIRST :LIST 15 15
PLAYTUNE BF :LIST

END

You can use PLAYTUNE like this:

PLAYTUNE [A2 A#2 B2 C2 C#2 D2 D#2 E2 F2 F#2 G2 G#2 A3]

You could name lists that represent phrases of songs and play them
with PLAYTUNE. Here are some examples.

NAMING NOTES

MAKE “SCALE [C2 D2 E2 F2 G2 A3 B3 (3]

MAKE “SCALE2 [C3 D3 E3 F3 G3 A4 B4 C4)

MAKE “TWINKLE [C2 C2 G2 G2 A3 A3 G2 R
F2 F2 E2 E2 D2 D2 C2 RI

MAKE "FOLK (D4 C#4 D4 D4 D3 D3 F#3 F#3
A4 A4 B4 A4 B4 C#4 D4 D4)

PLAYTUNE :TWINKLE

For more ideas about what you can do with melodies and rhythms, see
the Melodies project.
Making Turtles Move to Your Song

Here’s a program that makes a turtle show the “ups and downs™ of your
song. You can use it by trying the procedure TURTLESONG with a list of notes
as its input. For example, try

TURTLESONG :TWINKLE

*III' ERENE T

z‘URTLESONG : THINKLE

Here are the procedures.

T0 TURTLESONG :LIST
SETUP.TURTLE

SONG :LIST

END

TO SETUP.TURTLE

cS

TELL @

PU LT 90 FD 150 RT 9@ BK 60 PD
ST

SETPN @

SETPC 9 40

END

253

254

MUSIC

TO SONG :LIST

IF EMPTYP :LIST [STOP]

MAKE "“NOTE FIRST :LIST

IF :NOTE = "R [TOOT @ THING :NOTE 15 40] [JUMP THING :NOTE)
PU RT 90 FD 20 LT 99 PD

SONG BF :LIST

END

T0 JUMP :FREQ

MAKE “INT (:FREQ - 109) / 3
FD :INT

TOOT @ :FREQ 15 49

WAIT 15

RT 180

FD :INT

RT 189

END

These procedures draw lines on the screen whose lengths represent
pitches. They fit best for notes in the range from :A2(110) to :D4(640).
Using the Atari Keyboard as a Music Keyboard

MUSIC is another example of using the precomputed notes; it makes the
Atari keyboard act like a music keyboard. Start it up by typing

MUSIC
The program takes a while to set itself up, then it types
READY

Now you can play music by pressing keys. Notes are assigned to the
keys according to a layout that is like that of a piano keyboard:

TAB
CTRL

SHIFT

0o

? G6 4 87 b C9 4 %l INSERT 'éf‘:CEKrSs
E F G A B C D E
E R i Y u | (0] P
3 AELE 3 |E
D E F G A 8 C D
X C ' B N M ’ .

NAMING NOTES

In order to make the layout similar to that of a piano, some of the keys
do not play any note. Reminder: Take care not to press the Atari (/) key.

The Music Keyboard Procedures

MUSIC also creates variables for fast reference. It creates variables
whose names are names of Atari keyboard keys (for example Z, X, C) and
whose values are names of notes. This is done by ASSIGNKEYS. For exam=
ple, : S becomes C#3.

MUSIC then calls KEYBOARD. KEYBOARD waits for you to press keys. It
converts the name of the key you pressed to the name of a note and calls
NOTE to play it. NOTE converts the name of the note to a frequency and calls
the Logo primitive T00T to make the sound.

There are a couple of fine points in this program. The length of time
each note sounds is controlled by the global variable : DURATION, which is
set up in the MUSIC procedure and by the SETENV commands in the proce-
dure TEMPO. Also, the VOICE input to KEYBOARD makes it possible for you
to press two keys in quick succession and hear both notes. The KEYBOARD
procedure calls itself alternating between 0 and 1 as values for : VO 1CE. This
allows the program to alternate the playing of notes between the Atari
sound hardware voices 0 and 1. Thus one note keeps sounding in one voice
while the program starts a second note sounding in the other voice.

Reminder: After using the MUSIC program, you may want to restore
the music envelope decay to its initial state by saying SETENV 0 0 and
SETENV 1 0.

TO MUSIC
ASSIGNKEYS [[Z C3] [X D3] [C €3] [V F3] (B G3] [N A4l [M B4l
[, C4] [. D4) [/ EA4)]

ASSIGNKEYS [(S C#3] [D D#3] [G F#3] [H G#3] [J A#4]
[L C#4] [; D#41]

ASSIGNKEYS [[Q C4] [W D41 [E E4] [R F41 [T G41 [Y A5] (U B5]
[I €51 [0 D51 [P E51]

ASSIGNKEYS [[2 C#4] [3 D#4] [5 F#4] [6 G#4] (7 A#5)
[9 C#5]) [0 D#5]]

MAKE "DURATION 29

TEMPO :DURATION

PR [READY]

KEYBOARD 0

END

TO ASSIGNKEYS :KEYNOTEPAIRS

IF EMPTYP :KEYNOTEPAIRS [STOP]

MAKE FIRST FIRST :KEYNOTEPAIRS LAST FIRST :KEYNOTEPAIRS
ASSIGNKEYS BF :KEYNOTEPAIRS

END

TO TEMPO :N
SETENV © :N / 10
SETENV 1 :N / 10
END

256 MUSIC

T0 KEYBOARD :VOICE

MAKE "TEMP RC

[F NAMEP

KEYBOARD 1 -

END

:TEMP [NOTE :VOICE THING :TEMP]

:VOICE

TO NOTE :VOICE :NOTE

T00T
END

:VOICE THING :NOTE 15

:DURATION

PROGRAM LISTING

TO NAMENOTES
MAKE "R 15000

NAMEOCTAVES [A A# B C C# D D# EF F# G »

G#] 1 55
END

TO NAMEOCTAVES :NAMES :0CTAVE »
:STARTFREQ

IF :0CTAVE > 8 ([STOP]

NAMEOCTAVE :NAMES :OCTAVE :STARTFREQ

NAMEOCTAVES :NAMES :OCTAVE + 1 »
:STARTFREQ * 2

END

TO NAMEQOCTAVE :NAMES :0CTAVE

IF EMPTYP :NAMES ([STOPI

MAKE (WORD FIRST :NAMES :0CTAVE) »
:FREQ

NAMEQCTAVE BF
1.0595631

:FREQ

:NAMES :0CTAVE :FREQ *

END

TO PLAYTUNE :LIST

IF EMPTYP :LIST [STOP)

TOOT @ THING FIRST :LIST 15 15
PLAYTUNE BF :LIST

END

TO TURTLESONG :LIST
SETUP.TURTLE

SONG :LIST

END

TO SETUP,TURTLE

cs

TELL @

PU LT 9@ FD 150 RT 99 BK 60 PD
ST

SETPN o

SETPC 2 49

END

>

TO SONG :LIST

IF EMPTYP :LIST (STOP]

MAKE "“NOTE FIRST :LIST

IF :NOTE = "R [TOOT @ THING :NOTE 15 »
401 [JUMP THING :NOTE)

PU RT 90 FD 20 LT 90 PD

SONG BF :LIST

END

T0 JUMP :FREQ

MAKE “INT (:FREQ - 100) / 3
FD :INT

TOOT @ :FREQ 15 4¢

WAIT 15

RT 189

FD :INT

RT 180

END

TO MUSIC

ASSIGNKEYS [[Z €3] (X D3] [C E3] [V »
F3] [B G3] [N A4] [M B41 [, C4] »
[. D4) [/ E4]]

ASSIGNKEYS [[S C#3] (D D#3]1 [G F#3) [H »
G#3]1 [J A#4] [L C#4] [; D#4])

ASSIGNKEYS [[Q C4] [w D4) [E E4] [R »
Fal [T G4) [Y ASI [U BS51 (I C5]1 »
[0 D51 (P E5)]

ASSIGNKEYS [[2 C#4] (3 D#4] [5 Fedl [6 »
G#41 [7 A#5) [9 C#5]1 [@ D#51]

MAKE “DURATION 20

TEMPO :DURATION

PR [READY]

KEYBOARD @

END

TO ASSIGNKEYS :KEYNOTEPAIRS

IF EMPTYP :KEYNOTEPAIRS [STOP]

MAKE FIRST FIRST :KEYNOTEPAIRS LAST »
FIRST :KEYNOTEPAIRS

ASSIGNKEYS BF :KEYNOTEPAIRS

END

TO TEMPO :N
SETENV @ :N /
SETENV 1 :N /
END

19
10

TO KEYBOARD :VOICE

MAKE "TEMP RC

IF NAMEP :TEMP [NOTE :VOICE THING »

: TEMP]
KEYBOARD 1 -
END

:VOICE

NAMING NOTES 257

TO NOTE :VOICE :NOTE
TOOT :VOICE THING :NOTE 15 :DURATION
END

MAKE “SCALE [C2 D2 E2 F2 G2 A3 B3 (3]

MAKE “SCALE2 [C3 D3 E3 F3 G3 A4 B4 (4]

MAKE “TWINKLE (C2 C2 G2 G2 A3 A3 G2 R »
F2 F2 E2 E2 D2 D2 C2 R]

MAKE “FOLK [D4 C#4 D4 D4 D3 D3 F#3 F#3 »
A4 A4 B4 A4 B4 C#4 D4 D4)

