
3
Games

Boxgame

When you type BOXGAME, two square boxes are put on the screen. They are
the targets. A turtle appears in the center of the screen. The goal of the
game is to put the turtle inside each box. After you put the turtle inside a
box, the box vanishes. BOXGAME gives you experience moving and turning
the turtle.

• •

After sets up the boxes and the turtle, it activates demons to
watch for the turtle crossing over the lines of the boxes. Then the procedure
stops, and you take over and control the turtle directly using commands like

 or When one of the turtles collides with a line, a
demon invokes instructions that make the box disappear.

 can be modified so that you control the turtle in different
ways. You might want to use special commands, like for and
for You might prefer to use a joystick to control the turtle.

In the following discussion I begin by showing how was con-
structed so that you use Logo primitives like FD and RT. I also show how to
introduce new commands like and to the game. Lisa Delpit then de-
scribes her version of which she made for some young children

By Cynthia Solomon.

134 GAMES

she was working with. I later describe how to change so that you
control the turtle with a joystick in port 1. Then I add more frills to the
joystick version.

The Procedures

 sets up turtle 0 and then turns the rest of the job over to
The player is in direct control of the turtle.

 calls to put the two targets on the screen and then
alerts the demons to watch for turtle 0 crossing over lines drawn by pens
0 or 1. When either event happens, the pen color is changed to the back-
ground color and thus the box becomes invisible.

The boxes are drawn in different colors. Their positions are chosen at ran-
dom and are likely to be different each time the game is played.

This kind of game can be fun for a while. But it can also be hard work
for very young children! Thus you might want to add procedures that will

B O X G A M E 135

let the user type in single-key commands for controlling the turtle. For
example, when the user types F, the turtle moves forward twenty units.

Bye-Bye Boxes

(A Modification of Boxgame)
I used Cynthia's with a group of five-year-olds to help them in
their left-right orientation, and they loved it. But while they improved their
ability to direct the turtle when the turtle's direction was at
(that is, when the turtle's left and right were the same as their left and right),
they were still thoroughly confused when the turtle was headed in any
other direction. To help solve this problem I modified so that the
squares appear in any of eight directions (0, 45, 90, 135, 180, 235, 270, or
315) on the screen at different distances from the center. I also set the turtle
up in the center of the screen, but now facing in one of the eight directions.
I added sound effects too, partially because I thought the kids would find
it interesting but mostly because I enjoy playing with The children
came up with the catchy name.

The procedures are almost the same as those for with the
additions of which generates the number for the turtle's heading,
and and which add the sound effects.

The Procedures

I will point out where I made changes to is like
except that it calls

By Lisa Delpit.

136 GAMES

In I add sound to the instructions for the demons.

 sets up the turtle for drawing each box at an angle that
is a multiple of 45 and at a distance of 25 to 70 steps from the center. This
distance is not far enough away to be hidden behind the text at the bottom
of the screen. then, turns the turtle to a heading that is a
multiple of 45, and the game begins.

I wrote GETTURN so that it outputs one of eight possible numbers, all

multiples of 45.

A sound of increasing frequency accompanies the drawing of the box.
A sound of decreasing frequency accompanies the disappearance of the
box.

B O X G A M E 137

The following three procedures are unchanged.

The next procedures are changed so that the turtle turns 45 degrees.

Back to Boxgame

Using a Joystick

Another variation of this game is to attach a joystick to the computer and
use the joystick to control the turtle. In the next example, pressing the
joystick button moves the turtle forward five steps. The joystick moved to
the left turns the turtle left 15 degrees; the joystick moved to the right turns
the turtle right 15 degrees. To do this has to be changed and a
couple of new procedures have to be written for the joystick.

138 G A M E S

Extending

 will set the turtle's speed. I use a speed of 100, but you might want
to change this. This time when the turtle goes over a pen line, the back-
ground changes color. Finally, the game starts up again.

 needs to be changed. I also want to change the setting-up
procedure. Let's rename the new versions of these procedures.

Here is the new procedure.

PROGRAM LISTING

B O X G A M E 139

1 4 0 GAMES

Pacgame

 was inspired by PAC-MAN™ and designed as a learning tool for
beginners. You play the game by using turtle commands to move the gob-
bling pacman around the game board. The game's special effects and fea-
tures are activated entirely by demons. Thus a player types all commands
directly to Logo and demons take care of the game's actions.

Here are the rules I decided on for

• The game is played on a game board. There is a pacman and three
targets. Unlike PAC-MAN's ghosts, the targets in are sta-
tionary.

• Once play begins, it continues until all three targets are gobbled.
• Each target is worth 10,000 points and explodes when it is gobbled.
• All turns need to be multiples of 90 degrees because the pacman can

gobble in only four directions. If any other turn is made, the pacman
will change back into a turtle and complain.

PAC-MAN is a trademark of Bally Midway Manufacturing Company

By Michael Grandfield.

P A C G A M E

In addition to the rules, the pacman bounces back onto the game board
whenever it goes out of bounds.

I

The Playing Pieces and the Game Board

Let's look at these one at a time.

The Pacman

I wanted to make a pacman that could gobble and also behave like a
turtle. It took two shapes to animate the pacman, one for an open mouth
and one for a closed mouth.

: SHAPE3 :SHAPE4

Animating the pacman without limiting its turtle capabilities or inter-
fering with typing in a new command was a problem. However, I found an
effective solution by using the once-per-second demon. Here it is.

This demon runs the instruction list
once every second. This makes the animation continue steadily until the
demon is halted.

Next I decided that the pacman should be able to gobble in four differ-
ent directions (up, down, right, and left) and made six more pacman shapes.

:SHAPE 1 :SHAPE 2 :SHAPE5 :SHAPEfe :SHAPE7

Later I explain how the pacman chooses the pair of shapes that corre-
sponds to its heading.

The Targets

Next I designed a target. The design I settled on has a distinct outline
to make it easy to see how far the pacman is from hitting it. It also has a
sinister face.

142 GAMES

I wanted this target to explode as it was being gobbled, so I made this
sequence of shapes.

:SHAPE 9 :SHAPE 10 :SHAPE11 :SHAPE12

In the game, three turtles are targets. Collision-detection demons tell
when a target has been hit. Here's an example.

:SHAPE 13

 gives the turtle representing the target each of the explosion
shapes in quick succession and also changes the turtle's color with each
change of shape.

Later I added new instructions for these demons, in order to score the
game and congratulate the player.

The Game Board

Originally the game board was a thin outline. It looked like this.

There was a problem with this approach. I wanted a demon to detect
any collision between the pacman and a border of the game board. Also,
I wanted to keep the pacman in bounds by having it bounce back from a
collision. I discovered that these borders were too thin. The demon often

BOXGAME 143

failed to detect a collision. My solution was to make the game board have
very thick borders.

Here is the procedure that draws the game board. Notice that I used
two pens of different colors to draw the board.

Bringing the Game to Life

The main procedure is It calls and

Setting Up

 clears all graphics and text from the screen, and calls
 and

144 GAMES

 puts all the shapes, which are stored as lists of numbers,
into the shape slots. It also erases the variables that contained the lists. (I
guess I always like to free up as much of the workspace as I can.)

 sets up variables that the program uses.

You have already seen in the description of the game
pieces.

The Play

The procedure calls two setup procedures, and
 Once these procedures have been run, the game begins.

 sets the score to and places the pacman and the targets
on the gameboard in the correct positions to begin the game. It also creates
the variable

During the game is given the value of the pac-
man's current position. This value changes at regular intervals, provided
that the pacman remains in bounds. If the pacman goes out of bounds

P A C G A M E

 is not given a new value, so the pacman can bounce back
to the position that is the value of

 creates demons. These demons animate the pacman and
detect collisions. The procedures that these demons call are the guts of the
game.

Procedures Called by the Demons

You can see that I have changed the instructions for the once-per-
second demon from the earlier example. The demon checks to see if the
pacman has heading or If so, it animates the pacman;
otherwise it reveals the original turtle shape. As you will see, this demon
is able to do several different jobs neatly.

The procedure uses two interesting programming
tricks.

The first trick is that I have given each shape a variable name that is
the same as the heading associated with the shape. For example, the shape
that gobbles upward is used when the turtle has a heading of 0, and is given
the name "0. The variable for this shape is created by the instruction

146 GAMES

Now if I type

or

Logo will respond

If the pacman's heading is 0, I can also type

and Logo will respond as if I had typed

The second trick is that I decided to use the bit of time between shape
changes to call the procedure This procedure checks to see if the
pacman is still in bounds. If so, gives a new value to the variable

To sum up, changes the shape of the pacman to
correspond to its heading, animates its gobbling, and calls

Here is the procedure It is called whenever a turn
that is not a multiple of 90 degrees is made.

 makes it clear when a turn is not within the rules by
showing the turtle shape and protects the game from crashing by allowing
the pacman to respond to any turning instruction.

Staying in Bounds

 is called whenever the pacman bumps into a bound-
ary of the board. It makes a bumping sound, sends the pacman back to

 and complains

BOXGAME 147

Gobbling the Targets

 is called whenever the pacman hits a target. It temporarily
stops the gobbling animation by halting the once-per-second demon and
lets you know that the pacman has hit a target by changing the pacman's
color. Next updates the score and tells the gobbled target to
explode. It also offers some congratulations and prints your score on the
screen. Finally checks the score to see whether to continue the
game or declare a victory.

The procedure animates the explosion by calling

The tricky part was synchronizing sound and animation.
I use both voices to emit a sound before each shape and color change. Thus
I use two commands. The shape and color changes begin before the
sound dies away, so all three events happen together.

On with the Game

 continues the game after a target has been gob-
bled. It resets the pacman's color and resets the once-per-second demon.

148 GAMES

Winning the Game

 30 ,000 .

BOXGAME 149

PROGRAM LISTING

[116 100]

 91

150 GAMES

B L A S T E R 151

0 0 0 0]

0 0 0 0]

62 62 28 0 0 0]

H

H

H

Blaster

That's your spaceship in the middle of the screen. You can steer with the
joystick and fire lasers at the three enemy ships that surround you. You get
points for hitting their ships. If an enemy ship collides with you, you lose
a life. The game ends when you've lost five lives.

By Brian Harvey.

GAMES

Turtle 0 represents your ship. It never moves from the center of the
screen, but it can turn in different directions depending on the position of
the joystick. It has eight possible shapes, each representing the ship facing
one of the eight possible directions.

:SHIP 3

•
Turtles 1, 2, and 3 are the bad guys. They move at random speeds.

Their direction is always more or less toward you, but not necessarily di-
rectly toward you. They have only one shape.
You shoot by pressing the joystick button. This makes a red line appear for
a moment, pointing in the direction the ship is facing. If this line hits one
of the enemy ships, you score a point. Demons are used to detect the shot
hitting an enemy.

B L A S T E R

Demons are also used to detect one of the enemy ships colliding with
your ship. (The enemy ships don't fire at you; they have no weapons. All
they can do is collide with you. Shame on you for firing at unarmed ships!)
In the picture below, your ship has blown up because an enemy ship hit you.

H
H

HU

L I V E S : 3 POI NTS:14

To start the game, run the procedure It has two subproce-
dures, one to set up the screen and the other to play the game. The inputs
to are the number of lives you're allowed and the number
of points you start with.

Setting Up

The setup procedure sets colors and shapes, positions the turtles, and uses
the PX command to set turtle 0 (your ship) in penreverse so that when you
shoot, it can display and then erase the blast by retracing the line. Here is

 and its subprocedures.

 takes two inputs. The first input is the starting shape num-
ber. The second is a list of names containing shapes (in the list form output

154 GAMES

by It uses to copy those shapes into Logo's shape slots. In
effect, this procedure replaces what would otherwise be ten individual

 instructions.

 sets the shape and color of the enemy ships.

 sets the shape and color of your ship, and tells the turtle
to penreverse, as explained earlier.

Playing the Game

The main job of is to set up several demons. There is one
for the joystick button, to fire a shot; three for the enemy ships colliding
with pen 0, when you shoot them; three for the enemy ships colliding with
turtle 0, when they hit you; and one for the joystick, to steer your ship. The
procedure also puts the enemy ships in random positions, prints the initial
score, and invokes to play the game.

Two variables are used throughout this part of the program to keep
track of scoring. These variables are the two inputs to called

 and

LIVES The number of times an enemy ship can ram your ship before
the game is over.

 The number of times you've hit an enemy ship. This is your
score.

Here are and its subprocedures.

B L A S T E R

 starts the demons for the joystick button (firing), turtle-
pen collisions (you shooting an enemy), turtle-turtle collisions (an enemy
ramming you), and the joystick (steering).

When nothing special is happening, the program spends most of its
time in It checks to see if you've run out of lives, in which
case the game ends. Otherwise, it steers the enemy ships, shows the score,
and continues. The ships are steered within 30 degrees of the direction
toward you, so they tend to get closer to you but don't always move straight
to you. (Their heading is chosen using the procedure, which is in
the Towards and Arctan project.)

When you move the joystick, a demon invokes the STEER procedure
with turtle 0 active. The demon wakes up whenever the joystick is moved,
including when it is returned to the center position. In that case, the input
to is —1 and nothing is done. Otherwise, we have to change the
turtle's heading (so it can fire properly) and its shape.

When you push the joystick button, a d^mon invokes the proce-
dure with turtle 0 active. This procedure draws and then erases a line
representing your shot. It hides the turtle while drawing so that the ship
doesn't appear to move.

156 GAMES

When your shot hits an enemy ship, a collision demon invokes the
 procedure, using to make the turtle representing that ship

become the current turtle. This procedure changes this turtle to an explo-
sion shape, blinks it on and off, makes a noise, and then repositions the
enemy ship somewhere else at random on the screen. It also adds one to
your score.

When an enemy ship hits your ship, a collision demon invokes the DIE
procedure with turtle 0 active. The turtle number of the ship that hit you
is an input to the procedure. That ship is moved to a random position, your
ship explodes, the game stops for a second, and the count of how many lives
remain is reduced by one. When your ship reappears, its shape is chosen
to match its heading.

Every so often, the procedure calls to
update the display of how many lives remain and how many points you've
earned. This isn't done instantly when you get a point or lose a life, because
it would slow down the play of the game. Because of this, you might some-
times get an extra (bonus) life if doesn't notice your death
soon enough. That's why the procedure checks for a negative number of
lives remaining and displays it as zero.

B L A S T E R

Shapes

%

:SHIP4

158 GAMES

SUGGESTIONS
• Make the enemy ships fire back instead of just ramming you.
• The game hasn't been "playtuned." Should it be easier or harder?

For example, the enemy ships move within 30 degrees of your direc-
tion. If that number were smaller, they'd hit you more often. The
range of speeds could be changed too.

• You could start with a limited number of shots available. On the
other hand, there could be a limit to the number of enemy ships that
appear. (As it is, there is no way to "win" the game by destroying all
the enemies.)

• You could add nice touches like stars in the background (remember
to use a different pen for the stars and for the shots!) and sound effects
between hits.

• It would be good to be able to move your own ship as well as steer
it. This would require some way to indicate "thrust"; you could add
a second joystick, or use the keyboard.

PROGRAM LISTING

The procedures from the Towards and Arctan project (p. 212) are also used in this program.

B L A S T E R 159

160 G A M E S

Alien

Here is a description of this program by its author, Jeanry Chandler.

Alien is basically a Space Invaders- type game. All you need to play

is a deft hand, and possibly a severe case of xenophobia. You control

a sturdy defender tank with a joystick; you launch your deadly cruise

missiles by (you guessed it) pressing the joystick button.

T h e alien craft, intent upon landing, will slip ever downward

while avoiding your missiles and dropping its own neutro-destroyer

bombs. I f the alien lands, you are in serious trouble indeed. T w o little

green creatures will e m e r g e and try to plant a b o m b on your tank. You

can at tempt to shoot the little pests, but your gun has j a m m e d and you

can only shoot in one direction, so you have to shoot one quickly and

then use the magic of Logoland to wrap and face the other. This, of

course, is nearly impossible.

In this write-up I talk about the overall structure of the program and
the decisions made about how it keeps track of things; I do not cover all the
procedures in detail.

This game is in two parts. If you manage to shoot the alien helicopter
before it lands, you don't play the second part. I have organized the pro-
gram so that the two parts have the same structure.

Before proceeding further, you may want to play Alien. To begin the
game, run START. You are the defender, controlling your maneuverable
tank with the joystick plugged into port 1. You can switch the direction you
are moving with the joystick and fire missiles at the alien helicopter with
the joystick button.

Program by Jeanry Chandler; write-up by Margaret Minsky.

A L I E N 161

Structure of the First Part of the Game

Naming Conventions

Setting Up

162 G A M E S

Setting Up Demons and Demon Instruction Conventions

One of the demons that creates carries out its instruc-
tions every time the joystick position changes. (It is created by the line

 The demon instructions call the procedure to let
the joystick control the defender's motion.

The and procedures create demons
for actions having to do with the missile and bomb. For example:

A L I E N 163

is a line in that creates a demon. This demon waits for a
collision between the defender's missile and the alien's bomb. This demon's
instructions make the missile explode, thus neutralizing the bomb and
protecting the defender from it. gives the player points for
having the good aim to hit the bomb. makes the
explosion graphics and sounds and sets : and : to zero. This
lets the game know that the missile and bomb have been destroyed.

 also creates a demon that waits for the joystick but-
ton to be pressed. When the button is pressed, a missile is fired.

The other explosion procedures are named for the things that cause
each explosion. For example, the procedure that is invoked when the mis-
sile hits the alien is named Remember that when this
happens, the player wins the game. The same demon instructions that call

 also include

In this program, the demon instructions conventionally include a call
to and a call to the appropriate explosion procedure. They also set

 or : if the game has been won or lost. For example, if the bomb
hits the defender, the player has lost the game. The instructions run by the
demon created for the collision between the bomb and the defender in-
clude the appropriate explosion procedure and also
This means you can systematically review all the conditions for winning and
losing the game by reading through the demon setup procedures.

The Game Actions

The main loop is It stops only if the game has been won or lost.
Either this happens in the first part of the game, or the alien helicopter
survives to land and calls If calls then

 stops when the second part of the game is finished.

GAMES

 calls most of the procedures that perform actions in the game.
It does not call or the explosion procedures; they are called by
demons.

 first checks : and : to see if the end of the game has
been signaled. If so, calls an appropriate procedure and stops. If not,

 updates the shape of the defender according to what is happening
with the missile. It uses a trick with the shape numbers.

The trick is that uses : to choose which shape to give
the defender. : gets changed by demon instructions. It is set to 1
when the missile is launched. This happens when the joystick button is
pushed.* (See When the missile hits something, or when
it gets to the top of the screen, : MI SS I LE is set to 0 and the missile disap-
pears. Demon instructions take care of this. While the missile is flying on
the screen and is 1, gives the defender shape 9. When
the missile is gone and : is 0, gives the defender the
ready-to-launch shape 8.

 then calls which makes the alien helicopter's rotor seem
to turn by changing its shape. It also makes some sound effects to accom-
pany the animation.

 makes the alien drop closer to the ground 80 percent of the
time. It uses to decide whether to drop the alien.

' *The MISSILE procedure fires the missile up and in the same general direction as the
defender is traveling. It uses the ADJUST procedure to decide on the heading of the missile.

A L I E N 165

 checks whether the alien has reached ground level. If it has,
 calls the second part of the game. Otherwise, may

call to make the alien change direction toward the defender. It uses
 to do this one third of the time.

Next checks if the bomb is on the screen. If it is not,
calls to launch one. aims the bomb at the defender using

Last, calls again to create more animation of the alien,
and then calls itself to continue the game process.

Winning and Losing

The and procedures print the score and either a congratula-
tory or a gloomy message.

The Second Part of the Game

If the alien craft survives your attacks and reaches ground level, is
called. LAND controls all the action that happens at ground level. Since this
part of the game has a similar structure to the first part, the programs look
similar. Some of the same shapes are used. There is still a defender (with
the same shape), two aliens (with animated walking shapes), and a bullet for
the defender to shoot.

The turtles' new assignments are

0 Defender (the player)
1 Green alien walker
2 Green alien walker
3 Bullet (the player's)

Since there are two alien walkers, and you have to shoot both of them
to win the game, there is a new game variable is the
number of aliens still alive. This lets the game know when you have shot
an alien, and whether it is the last one.

 corresponds to It calls which cancels all the
demons created in the first part of the game and sets up the new shapes and
turtle states. Then it calls which creates the demons
used in this part of the game. For example, the line
in creates a demon that lets the joystick control the
defender's motion.

*T0WARDS is described in Brian Harvey's project, Towards and Arctan.

166 GAMES

A L I E N 167

Note that there is nothing corresponding to the or varia-
bles in this part of the game. The keeps going once it is fired. One
bullet has to hit both alien walkers for the game to be won.

SUGGESTIONS

Jeanry suggests that you change the shapes that the turtles carry to
make a different game. You might make a flying saucer blinking its landing
lights instead of a helicopter spinning its blades.

A very different kind of game could be created with this type of pro-
gramming. One idea is to replace the defender shooting destructive missiles
with a ground launching platform trying to send recharge fuel cylinders to
a disabled spaceship. The fuel could enable the spaceship to turn on its
brakes and land safely instead of crashing. You could even make the joystick
control the refueled spaceship, so that the new challenge is to land the ship.

You can use some of Alien's techniques—sound effects, controlling
turtles with the joystick, simple game play—in projects completely of your
own imagination.

PROGRAM LISTING

THE FIRST PART OF THE GAME

- 1 2]

1 6 8 GAMES

DEMONS

SETUP FOR THE ALIEN AND DEFENDER

GAME ACTIONS

A L I E N 169

EXPLOSIONS, SCORING, AND WINNING/LOSING

DEMONS

SCORING PROCEDURES USED IN ROTH
PARTS OF THE GAME

THE SECOND PART OF THE GAME

GAME ACTIONS

170 GAMES

EXPLOSIONS, SCORING, AND WINNING/LOSING

 AND SHAPES

 "MISSI

0 0 0 0 0]

 [0 0 0 0 0 0

A L I E N 171

SHAPES

: MAIM 1

slot 12
: MAN2

slot 13
:ALIEN

slot 3

:ALIEN2

slot 10

: DEFENDER

slot 1

: DEFENDER1

slot 2

:DEFENDER2

slot 8
:DEFENDER3

slot 9

:EXPLOSI ONI

slot 6

:EXP LOS I 0I\I2 :MISSILESHAPE :BOMBSHAPE :BULLET

s] o t 7 slot 4 slot 5 slot 14

172 G A M E S

Adventure

Adventure is one of a class of hundreds, if not thousands, of games inspired
by Crowther and Woods's classic FORTRAN program. You play an adven-
ture game by exploring a simulated world, and usually you win points for
finding objects, solving riddles, or killing monsters. This version, however,
awards no points.

There are three aspects to an adventure program:

• Language understanding. The program must recognize commands
that you give in a simple language.

• Simulation. The program executes your commands.
• Language production. The program tells you the results.

As you read on you'll find out how my program does all three of these
things.

This adventure is smaller than most because of Logo's space limitations.
Other microcomputer adventures are usually written in assembly language
and also use a disk to store more information. On the other hand, this
version was easy to write and is easy to modify and extend.

Adventure Programs Understand a Simple Language

When you play Adventure you give the computer commands in the Adven-
ture language, just as when you use Logo you use the Logo language.
Adventure is a program written in Logo that understands the Adventure
language.*

Sentences in this language are in one of three forms:

verb Just a verb. The verb is one of these: or

verb noun A verb followed by a noun, for example, Verbs
a r e o r N o u n s a r e o b j e c t s

you find while playing the game,
direction The implied verb is and the direction must be one of

 o r

Most of the verbs have the same meaning as their English counterpart.
(You can find out more by using them.)

The syntax rules of the language are simple and strict. Each verb is in
one of two classes: either it must always be followed by a noun
KEY), or it must never be used with a noun. The program won't understand
what you mean if you supply an object to a verb that doesn't expect one
(for example, or if you omit a necessary noun.

"Logo, the program that interprets the Logo language, is itself a program, written in the
machine language of the microcomputer. For more on this subject, see the preface and Logo
Interpreter project in this book.

By James Davis.

A D V E N T U R E 193

Using the Program

To use the program, invoke the top-level procedure
The program describes the area you're in, then prompts you (with

a <) for a sentence.

>

You type in a sentence telling the program what to do. If it understands
you it does what you typed; otherwise it complains. If your action takes you
to a new place, the program describes the new place. After telling you the
consequences of your action, the program is ready for another command.

>

If you move north, you'll find yourself at the foot of a cliff, with a door
leading in. But to open the door you'll have to explore the forest further.
Be careful not to get lost; in Adventure it isn't always true that if you travel
east to get from one place to another that traveling west will get you back
where you were.

You can get a list of every word the program knows by typing ?.
You should probably play the game before reading further, because it

is easier to understand the program if you've used it and because the game
is much more fun if you don't know what to expect.

An Adventure Program Simulates a World

The program uses Logo words to represent the places and objects in the
simulated world. The word represents the crowbar you'll find in
the guard room. The word represents that guard room. There is one
word for every place or object in the simulated world.

Objects and rooms in the simulation have different attributes (for ex-
ample, weight). Each word has a list of all attributes of the thing it repre-
sents. A list of attributes is called a property list. *

*This terminology comes from the programming language LISP. Some procedures in this
project are tools for working with property lists: PPROP, GPROP, HASPROP, and PROPTRUE?.

174 GAMES

The Locales of the World Are Linked Rooms

Exploring in Adventure means moving from place to place and discovering
objects in those places. The program thinks of all locales in the game (indoor
rooms, the forest, stairways) as rooms. Each room is connected to at least
one other room. You can move from one room to any connecting room—
provided there's nothing preventing you from leaving, such as a shut door.

In Adventure there are six possible directions you can move: north,
east, south, west, up, and down. Each room can have as many as six neigh-
bors, one in each direction. This map shows how rooms are connected.

The rooms in Adventure and the
connections between them

HALL

u

t
STAIRS

u

t

ANTE

s

DOCK
u

LADDER

GUARD

(DOOR 1)

t

Each room is represented by a Logo word. Each word has an EXITS
property that holds a list of six items, one for each possible exit direction
from the room. Each item is the empty list if there is no exit in that
direction; otherwise it is the word for the connecting room. Items in the

A D V E N T U R E 175

 list appear in the order in which the direction options are presented:
north, east, south, west, up, and down.

For example:

makes the room have just two exits. (This makes sense, because we
usually go up or down stairs, and there are exits at the top and bottom.) The
up exit leads to the down exit to (Actually, the exits lead to the
rooms these words represent.)

I defined six variables to hold the positions of the exits in the exit list.

Then I defined an operation that outputs the nth element of a
list. This made it possible for me to extract the exit from a room for any
direction. For example, I can get the up exit from with the follow-
ing instruction:

The room exits are set up by INIT For a description, look at the
listing at the end of this write-up.

Doors Were Hard to Add

In the outside world, nothing stops you from moving across open ground.
But if you're in a building, there may be doors that stop you from getting
into a room.* If a door is shut you must open it to get through, and if it is
locked you must unlock it with a key before you can open it.

Doors are important in the real world, so I wanted to have doors in my
program too. Doors were the most difficult part of the program to write. I
tried a few different schemes before settling on one.

A door is a kind of exit from a room, but it isn't a destination in its own
right. You may leave a room through a door, but you don't stay in the door.
You go to the room on the other side.

Since doors are a type of exit, I decided that doors could go in the EXITS
list just as rooms could. So I needed a predicate (DOORP) to distinguish doors
from rooms, since both could be in the list. As you read on you'll discover
other consequences of this decision.

*The word "indoors" is a reminder that one important thing about buildings is that they
have doors, at least in most Western cultures.

176 GAMES

You Leave a Room Through an Exit

When you move in a given direction, the program invokes the procedure
 Its input is a number telling which way you want to move. (North is

1, east is 2, and so forth.)

The global variable holds the word representing the current
room. I used a global variable because I knew I'd refer to it in many places
in the program, and it would have been a bother to pass it as an input to
all the procedures that need it.*

If the exit is a door, the program uses if the exit is a room,
the program uses to put you in the new room.

 sets the global variable to the new room and describes
the locale.

Doors Are Tricky

The program knows which rooms are on both sides of any door because
doors have properties just as rooms do. In a way, the program uses
doors as if they were small rooms that you move through automatically. If
leaving a room to the east takes you to an (open) door, you will go through
the door to whatever is to the east of the door.

 word that stands for a door has a property on its property list.
The value of its property is The predicate checks this
property:

 door also has a property that is only if the door is shut;

*There are a few other global variables in the program. Almost all of them have names
beginning with a sharp sign ("#") to distinguish them from procedure inputs. All global
variables are set up by INI TVARS at the start of the program.

A D V E N T U R E 177

a property that is only if the door is locked; and a
property that is the word representing the key that can unlock the door.

The procedure tries to move you though a door in a certain
direction. If the door is open, it finds the connected room by looking in the

 list for the door.

The adventure program in this project has only one door but
I designed it so that I could add more doors.

Adventure Programs Produce Language

The program prints descriptions of rooms and objects, tells you the results
of things you do, and sometimes complains if you try something impossible.
All the messages it prints are in fairly normal English.

The program describes what you'd see if you were really in the simu-
lated world. When you enter a room or give the LOOK command, the pro-
gram describes the room. When you give the command, the
program describes whatever you're carrying. When you give the

 command, the program describes an object in more detail (some-
times).

Every object or room has a property. For an object, this
property is a noun phrase describing the object (for example,

 For a room, this property is a prepositional phrase describing your
relation to the room (for example,

 The descriptions are in different forms because the descriptions
are used in different ways. room description is for telling you where you
are (in a room, on a ladder, at a computer terminal) and the object descrip-
tions are for saying what a thing is.

 describes the room you're in.

The value of the property of a room is a list of the words for
the objects in that room. If you look at (in the full listing), you'll
see how I set up the initial contents of each room.

*The descriptions include the correct article (A or AN) for the word. I could have written
a program to choose (checking whether the first letter is a vowel), but it would have taken up
extra space and cost some extra time to execute. If there were seven hundred items instead
of seven, I would have written the procedure, because it requires less space and less work to
write it than to include an article in each of seven hundred descriptions.

178 GAMES

 gets each object's description from its property.
It prints out the objects' descriptions, one after the other, all on the same
line.

There are separate procedures for listing exits and doors because I
thought it looked better to list them separately. lists the directions
in which you can leave a room, and lists the doors of the room.
These procedures are similar.

The variable holds a list of the names of all directions in the
same order as they appear in the exit list. PREXITS looks at the first direction
name in and the first exit in the T list. Since the names and
the exits are in the same order, it can tell what name to use for the direction
of the exit. It maintains this one-to-one correspondence as it checks each
item of the lists. An item is an exit if it is not empty and not a door.

 differs from because it checks for doors instead of
exits and tells you about the doors.

A D V E N T U R E 179

The Syntax and Semantics of the Adventure Language

The first thing the program has to do to understand your sentence is to
decide what type of word (noun, verb) each word in the sentence is. My
program uses a very simple scheme: If the sentence is one word long, the
first word must be a verb or a direction. If it is two words long, the first word
must be a verb and the second a noun.

The procedure takes one input, a sentence.

One-word and two-word sentences are handled by separate proce-
dures. Anything else is an error.

I f you type finds the word in and
knows you want to move in that direction. Each direction word has a value
that is a number from 1 to 6 (an index into the EXITS list for the current
room). The procedure uses to get the value of the direction word,
and gives that as the input to the procedure.

Next the program looks at what the words mean. The "meaning" of a
verb is given by a Logo procedure that carries out an action. For every verb
in the language there is a Logo procedure. Conveniently, the Logo proce-
dure has the same name as the verb.

The global variable is a list of all single-word verbs.

If your single-word sentence is in I use to run the verb
procedure. wants a list as input, not a word, so I use to make a list
containing only the verb.

 interprets two word sentences. Like it checks whether
the first word is a member of a list of verbs:

and runs a Logo procedure for the verb.

180 GAMES

Each verb procedure takes one input, a noun. The noun is the second
word in the sentence.

If you type the two-word sentence the program inter-
prets the sentence by invoking the procedure (the verb) with the
word WINE (the noun) as its input. In other words, the program carries out
the Logo instruction

That's why, in making the input list for RUN, I add the quote character
(") in front of the noun. Otherwise Logo would try to run the instruction

which is wrong.

Verbs in One-word Sentences

The simplest verb is ?, which just prints the names of all verbs that the
interpreter knows. It exists so you won't have to remember the names.

The verb takes an inventory of objects you've picked up.
The global variable holds the list of objects. The procedure
DESCRIBE (explained earlier) prints the actual description.

The verb LOOK is called to describe a room when you enter it.

Verbs with Objects

Nouns refer to objects in the simulated world. The program has to deter-
mine what a noun means. A sentence like "take rope" means that the user
wants to pick up the rope. Somehow the program has to translate the word
"rope" to the word the program uses to represent the rope.

My program has an extremely simple solution. The word the program
uses is the same as the word in the Adventure language. That is why I had
to be careful choosing names for the words I used in the program. They had
to be the same as the words I thought users would use in their sentences.

A D V E N T U R E 201

Objects in Your Inventory or Locale

The Verb

Like all verbs with objects, first checks whether or not the object
you mention is present by using

An object is present if it's either in your inventory or lying loose in the
room.

*This solution has drawbacks. First, the user must spell the word exactly as 1 do and must
not use synonyms. There are other drawbacks as well, but 1 11 save them for later.

T put this feature in, even though there are 110 earrvable containers in the game, because
it seemed elegant, and I might want to add containers later.

'ABSENT combines two actions in one procedure. It is a predicate, the opposite of
PRESENTP, and it also prints a message if the object is absent.

This extra action restricts the usefulness of ABSENT. It should only be called by a verb
procedure, because otherwise it is not appropriate to print the message. Usually it's a bad idea
to combine functions like this, but I did it after I discovered that only verb procedures used
ABSENT and that each of them printed the same message if the object was absent. I combined
the test and the message into one procedure to save space.

182 G A M E S

If an object is absent, the program just says so. The program deliber-
ately doesn't distinguish between objects that exist somewhere but aren't
nearby and objects that don't exist. If the object contains something,

 tells you about it. That's the only detail that ever gives.

The and Verbs Change Your Inventory

The program has to be more careful than This is because
there are many reasons that might prevent you from taking an object.

• It might not be there.
• You might already have it.
• It might be too heavy.
• It might be impossible to carry.
• Your arms could be full.

The program checks for each of these, making an appropriate com-
plaint. If nothing prevents it, the object is added to your inventory and
removed from the contents of the room.

When I wrote this procedure I had to decide how to represent the
mobility of objects. I could have given everything a property and
compared that with a variable, but I rejected that as too much
work. All I wanted was to prevent clearly impossible requests, such as
picking up trees. For my purposes, objects are either heavy or not, so this
suggested a property that was only if the object was liftable.

I chose to give heavy objects an property of instead
of giving light objects a ? property because I knew I could save some
space that way. I knew there would be only a few heavy objects and many
light ones, and if I wrote my programs to assume that an object was light
unless explicitly marked heavy I could avoid storing all the
properties that were

A D V E N T U R E 183

The Game Program

184 G A M E S

. They are in the

earlier.

 Unlocks a

Although it may not appear so at first, it's a little difficult for the program
to understand because it's hard to tell what object the word

 refers to. Remember, I wanted it to be possible for there to be many
doors.

The verb first ensures that you asked to unlock a The
program then uses to try to find a door. If there is one,
looks at its property to be sure that you have the key that unlocks it:

Unlocking a door also opens it automatically; you don't need to
a door after you it.*

The procedure looks at every item in the list of the
current room until it finds one that is a door, and outputs it. This door is
assumed to be the object referred to by in the sentence

*I didn't have enough space for a verb OPEN, and requiring you to OPEN the door slows
the game down to no purpose, anyway.

A D V E N T U R E 185

DRI NKing Ends the Game

If you've played the game, you know the unfortunate effects of drinking
wine.

The verb is a little strange. It checks that you are drinking a
liquid that is present, but then it makes two assumptions: that you are
drinking wine and that you are drinking by the river. The program tells you
the deadly result by setting the global variable to a sentence.

 notices, and ends the game.
The two assumptions are used in at least two ways. The first is that the

message uses the words "wine" and "river" explicitly, and also says that the
result is drunkeness. The second use of the assumption is that the result only
is possible if you are by the river.

The assumption that you drank wine must be true because the only
liquid in the game is wine. The assumption of locale is safe because the only
wine in the game is in the barrel, and you can't move the barrel.

It is not a good thing to make assumptions like these in writing pro-
grams because it makes it hard to extend the program. (If I had added other
liquids, I would have had to add an property to to
distinguish it from safer liquids.) I did it to save space, but I'm not proud
of it.

You Can Change This Adventure in Many Ways

The easiest thing to do is to add new rooms. All you need to do is change
the property assignments in Make sure that you provide some
path from every room to every other room.

You can add new doors in the same way as you add rooms. But it's hard
to add a new key, for reasons I'll explain. So when making new doors, either
they should not be locked or they should use the same key.

If you want to make a one-way exit from one room to another, do not
include the first room in the of the second. (You can also make
one-way doors.)

It's also easy to put new objects into the game. All the objects are
created by

186 GAMES

You add new verbs by writing the procedure and modifying the list
 or But new verbs or objects may need some new proper-

ties. For example, if you added the verb you'd want to give edible
objects a property of and have check it.

It might be fun to make a type of door that only opens after you take
some action such as saying a password, or pressing a button.

Your verbs can end the game at any time by setting
It's easy to debug changes to Adventure. You can stop the program

with the BREAK key, look at things, fix them, then resume with LOOP.
(This is also a good way to cheat.)

Some Problems with My Program

The scheme I use for semantics is not very good. The nouns you type must
be the same words as those used by the program. That is why it would be
hard to add another key (for example, a brass one). What Logo word would
you use to represent it? You can't use KEY, because that word already stands
for a different key, the iron one in the forest. When you type
the program looks for the word spelled "k-e-y". Suppose you use
The description of the new key would be and the user
would try to refer to it with the word used in the description, namely KEY.
The user would have no way to know that the "right" word is really
and even if the program printed out that word, it wouldn't be much like
English. Can you imagine "You see a brass keyl"?

For the same reason, there cannot be a second sword, or crowbar, or
any such thing. The problem is most acute with keys, though, because that
means that one key must be able to unlock all doors.

Note that this is not a problem for rooms, because the user never refers
to a room in any way. It is also not much of a problem for verbs, because
it would be easy to give each verb a property holding the name of a Logo
procedure to run. Then verbs would not have to have the same name as the
procedure that defines them.

One possible fix to this would be to give each item a property for what
"kind" of thing it is.

Then a reference to a "key" could be interpreted as meaning any
object that was a key. This is similar to the way doors are identified by

Another possible solution would be to give the noun a property list
of all the program words that are a "kind of ' key.

There would still be problems with ambiguity. There might be two
keys in the area. There is no way at present for the program to ask the user
to say which key was meant. (This is a problem with as well. It
takes the first door.) Perhaps the program could ask:

A D V E N T U R E 207

Another problem is that room descriptions sometimes refer to things
that the user might mention. For example, the description of the dock
mentions an underground stream. People often try to drink the water, but
the program doesn't even know there is a "stream" nearby, much less that
a stream holds "water." The word "stream" is contained inside the descrip-
tion, and the program has no way to use it other than by printing it.

If scenes were described by properties, descriptions could perhaps be
built from them, and the program would have access to the properties of
the room. But generating good English from a set of properties is a difficult
problem.

Some Adventuresome Improvements

There are many possible improvements to this game, some easy, others
more difficult.

Writing programs that understand and produce natural language is a
challenge for hundreds of researchers throughout the world. In a small way,
Adventure is a part of this research.

First, you could fix the problems I just mentioned. But there is even
more to do.

Consider a dialogue like

The program could use context to figure out what the word "it" means.
Or suppose you're carrying a baseball bat and a rock and are attacked

by a vampire bat. The word "bat" in means the vampire bat,
not the baseball bat.

It would also be very nice to have a richer syntax than the simple verb
and noun scheme used here.

Many adventure games have autonomous characters. Usually they are
your foes. It would be a fine challenge to add them to this game. Characters
should move from room to room on their own, and sometimes the player
should encounter them. The results need not always be woeful.

More complexly structured worlds are possible. The objects in my
world are mostly decorative—there is nothing to pry with the crowbar,
nowhere to climb with the rope.

If the Adventure language was extended such that you could use it to
program, then you could teach a turtle how to explore, send it in to danger-
ous areas, and have it carry back things for you.

Writing good adventure programs is an art and a game of its own. Now
that you've explored the simulated world of Adventure, perhaps it's time
for you to begin exploring Adventure itself.

188 GAMES

PROGRAM LISTING

SE •

A D V E N T U R E 189

190 GAMES

D U N G E O N 191

Dungeon

Program by Jeanry Chandler; write-up by Margaret Minsky.

192 GAMES

As Jeanry says, there are two ways to enjoy Dungeon. One is to be the
adventurer in his dungeon, and the other is to add to Jeanry's dungeon or
to create your own with his tools. He's right, too, that you must experience
it to understand it. So try it!

To start the game, type:

Playing the Dungeon Game

 begins the game. You control an adventuring player with a joystick
in port 1.* You can move the adventurer with the joystick to avoid or
confront monsters, to go through doors, and to get the contents of chests.

As in other adventure games, there are some commands you can type.
 stands for inventory, for drink, and for wave wand. You must press

 after your commands.

•Remember that in Atari Logo, the joystick is referenced by JOY 0 when it is in
port 1 of the Atari.

D U N G E O N 193

An Overview

The following sections present an overview of how this program works as
the game is played and of how to modify the dungeon rooms and create
your own dungeon. Then there are some suggestions for modifying and
improving this program in more radical ways.

All of the procedures are listed at the end of this write-up. You may
want to look at some of them as you read about them.

Rooms

Each room is represented by a single procedure (for example,
 that prints messages about what is in the room and makes turtles

into monsters and treasure chests. Turtle 0 is the player, turtle 1 is usually
a monster, and turtle 2 is usually a treasure chest.

 is called as a subprocedure from all rooms. It does stuff that
needs to be done for each room: it draws walls and doors, sets variables with
the dimensions of the room, and creates some demons. Two of the demons
that it creates are those that wait for a collision between the player and the
monster and between the player and a treasure chest. It also creates a
demon that lets you control the player with the joystick and demons that
keep the player and monster from drifting through the walls of the room.

The rest of the instructions in each room procedure customize the
room. For example, look at 2 in which turtle 2 is a chest and turtle 1
is a kind of monster called a kobold.

 Give monster kobold shape.

Walls and Doors

The walls and doors are set up for each room by the proce-
dure. The walls are drawn with pen 0 and the doors with pen 1 and pen
2. A room can have up to two doors.

The subprocedure of creates a demon that
waits for the player (turtle 0) to bump into a wall; the demon calls a proce-
dure that makes the player bounce back. The condition for this demon is

194 GAMES

 Demons are also created to make the monster bounce off the
walls and doors. The monster is not allowed to go through doors.

The subprocedure of creates demons that wait
for the player to bump into a door. These demons use conditions

 or to detect this. When the player bumps into a door, the
player is moved into the adjoining room. The way this works is that the
demon for that door calls the procedure that represents the adjoining room.

N N

E

R00M1 with connection W to ROOM2

The demon for this situation is created by using

The Most Common Actions, and

The procedure, called by creates the de-
mons that wait for the player-monster and player-treasure chest collisions.

The demon that awaits collisions between the player and the monster
is created using the instruction 1 . Turtle 0
is the player and turtle 1 is a monster. When they collide, the demon calls
the procedure which causes the two turtles to "fight." They swing
at one another. The program considers the strengths and magical aids of the
two combatants and determines if either one is hit. As the combatants
continue to receive blows, they accumulate "hit points." If either sustains
too much damage, it dies.

The demon that awaits collisions between the player and the treasure
chest is created using the instruction
Turtle 2 is a treasure chest. If the player collides with turtle 2, the demon
calls The procedure determines what treasures the chest
contains and rewards the player with those treasures. Usually a treasure is
given to the player by changing the value of a global variable such as :
or :

Procedural and Demon-Based Representation

In this program, the only way to figure out all the details is to look at
all the procedures. You might say that the program itself "figures it out as
it goes along." You might contrast this with Jim Davis's Adventure game.
Jim's program has global structures that contain information about his dun-

D U N G E O N 195

geon. For example, it has a list of all rooms. In Dungeon, almost all informa-
tion is in the room procedures.

Programmer as Dungeonmaster: How to Create New and
Better Dungeons

In this section I will discuss three kinds of changes to the Dungeon game.
You can create new monsters, treasures, and whole rooms to put them in.
You can create a new dungeon to replace Jeanry's. You can make changes
to the workings of the game program itself to improve and change the
game.

Creating New Rooms, Monsters, and Treasures

Looking at the room procedures and so forth) will help
you figure out how to make new rooms. You could make your very own
completely new dungeon, or you could add rooms to the existing one.
Remember that when you add a room, you might want to change some of
the old rooms so that they connect to your new room. You might want to
change the procedure so that the wand can magically teleport the player
into your new room.

You may have noticed that Jeanry's doors are two-way. That is, if a door
leads west from to then there is a door that leads east from

 to Jeanry has made all of his doors match up. You might want
to make all your doors match up too, or you could make some doors be
one-way only. You could make some interesting and confusing dungeons
this way.

Here's an example of a new room I created.

This new room has a door leading west to and a door leading
south to To make it possible for the player to get to this room, I put
a door in leading east to To do this I changed a line in
from

196 GAMES

to

to

To add a new kind of monster, you might want to make a new shape
for it. You could add it to an old or new room, using the
procedure. (You will probably want to add instructions about your monster
shape in the and procedures.)

You can add new kinds of treasure. You must put your new kind of
treasure in the CHEST procedure so it can be "in" the treasure chest. Then
you must create a procedure to be run when your new treasure is found.
If you want to represent your kind of treasure as a variable with a point
value (like or you should initialize it in the procedure.

Making a New Dungeon

Jeanry has left an opening in the program for you to add a complete
new dungeon.

When you are playing the game and get to the stairs (in the
program asks if you want to go down. If you answer then the program
types a message saying that you cannot go down to the lower dungeon
unless you create it.

Let's say you create several new rooms that connect to each other but
do not connect to Jeanry's original four rooms. For example, let's say you
make and

Then you could change to

D U N G E O N 197

Then would plunk the player right into your dungeon.
If you need more Logo workspace for your new dungeon, you could put

your new room procedures in a separate file, for example
 Then you could have erase Jeanry's dungeon and

load in yours. For example:

Improving and Changing the Dungeon Program

Right now there is only one kind of chest. It can contain any of the kinds
of treasure in the game. You could change the game so that there are
several kinds of chests with different kinds of treasures in them.

You could make a player who had certain treasures or lots of experi-
ence points become more powerful. For example, the player could bribe
monsters to go away if he had enough gold. Or the player could be unable
to see certain treasure chests unless he found some magic glasses. The
Dungeon game could allow the player to go to the lower level only if he
had accumulated enough experience points. Here's a way to implement
that last suggestion.

You could create more typed commands similar to and
You could make the game smart about what direction you are going

when you go through doors.
You could introduce global data structures to keep track of objects. This

way the game could know when a monster in a particular room is dead and
not display it again when you return to that room.

198 GAMES

PROGRAM LISTING

SETTING VP

MAKEROOM, THE GENERAL ROOM MAKER

For when the player hits solid part of a wall.
Turtle 1 is usually a monster.

Turtle 2 is usually a treasure chest.

D U N G E O N 199

STUFF USED BY MAKEROOM TO DRA W WALLS AND DOORS

INDIVIDUAL ROOMS

200 GAMES

 Give monster shape.

Give monster kobold shape.
This is the chest.

Give monster turtle shape.
This is the chest.

This is the stairs shape.

ACTIONS THAT HAPPEN IN THE DUNGEON

D U N G E O N 201

ACTIONS THAT HAPPEN BECAUSE OF GETTING TREASURES

202 GAMES

FIGHTING

D U N G E O N 203

I FOR INVENTORY

D FOR DRINK

POTIONS AND WHAT THEY DO

204 GAMES

W FOR WA VE WAND

SETTING UP PARTICULAR MONSTERS

AIMING THE MONSTER TOWARD THE PLAYER

UTILITIES

D U N G E O N 205

SHAPES

:CHEST

slot 4

:STAIRS

slot 6
: THRUST

slot 5

:KOBOLD

slot 3

:TROLL

slot 2

:PLAYER

slot 1

