
1
Wordplay

Sengen: A Sentence Generator

SENGEN makes up English sentences similar to the following ones:

One of the questions you might ask is this: Does SENGEN make up sentences
the way we do or the way we did when we first learned to talk or write?
Another question you might ask is: What relationship does have to
understanding grammar? The first question is open to research and specula-
tion. The second might be an easier one to answer. Often when I first
discuss this project with children, they do not relate the programming
process to the learning of grammar. Later as they use their programs, the
children frequently exclaim: "So this is why they call words nouns and
verbs!" They also begin to appreciate formal systems. Studying grammar by
generating sentences that obey certain rules requires the programmer to
become aware of rules as well as of their exceptions.

Since this program seems to make sensible sentences without knowing
very much about grammar, children often develop an appreciation for
cleverness. For example, SENGEN doesn't know that some words are singu-
lar and some are plural or that singular subjects should be matched with
singular verbs; it does not know about verb tenses or pronomial relations.
Its apparent intelligence comes from the programmer's choice of words and
categories.

In the following examples, the nouns and verbs are all plurals and the
verbs are all in the present tense.

SENGEN builds sentences from vocabulary lists of nouns, verbs, adjec-
tives, connectives, and so on. It then assembles its selections according to
some rule of grammar.

Making the Program

One strategy in making a program might be to concentrate on developing
a random sentence generator that outputs only a verb. For example:

By Cynthia Solomon.

2 W O R D P L A Y

To do this a procedure is needed to blindly (randomly) pick out a selection
from a list of possibilities.

Let's make up a list of verbs and then make a procedure to select a
word from the list. In this example, the procedure outputs the vocab-
ulary list.

Whenever is called, it outputs that list.

What we now want is a procedure that will randomly choose one of the
items in this list. Here is the plan for this task: use a number obtained from

 to point to an item in the given list of choices. Then get that item
from the list. PICK does this and outputs the selection.

There is a slight problem. outputs a number from 0 up to but
not including its input number. Thus its output in is always one less
than the length of the list. We can fix that by adding 1 to 'S output.

 carries out its job recursively. When its input number is one, it
outputs the first item from its input list. Otherwise, subtracts one
from its input number and takes away the first item from its input list and
continues the process until the item is found.

Here is what looks like.

Now we can try

S E N G E N : A S E N T E N C E G E N E R A T O R

We could try it on different lists:

PICK seems to work.
Let's make a procedure that outputs just a verb.

Now we can move on to building a sentence by first making a one-word
sentence.

and so on.
Our attempt at making a one-word sentence fails because of the verbs

in the verb list. Only can be used without an object. So if we want to
make grammatical one-word sentences, we have to restrict our choice of
verbs.

Now let's make a sentence with a subject and an object. Let's follow
the pattern already set up for verbs and make two operations and

 outputs a list of nouns.

4 W O R D P L A Y

All we need to do to make a sentence is the following:

Imagine we had miscategorized the vocabulary and NOUNS could output a
list like

We might then get sentences like

This kind of bug is typical of the kind people run into when they first
do this project. Usually, when people confront their bugs, they begin to
appreciate rules of grammar and the fantastic power we derive from
categorizing words.

We can now make a procedure that outputs a sentence.

Extensions

One extension is to add adjectives to the sentences.

Edit

S E N G E N : A S E N T E N C E G E N E R A T O R

The sentences are getting more complicated, so it is time to introduce
additional categories like and For example:

Another possibility is to link two simple sentences by using connectives:

Finally, you change to include the new sentence:

PROGRAM LISTING

6 W O R D P L A Y

Argue

 carries on a dialogue with you. When you run it expects you
to type a s ta tement in the form or

 comes back with contrary statements. For example, if you make the
statement the program types

If it doesn't already know the opposite of a word, it asks you. For example,
if you type and does not know the opposite of

 it types

If you tell it it will type

Here is a sample dialogue.

Program by Danny Hillis; write-up by Margaret Minsky.

A R G U E 7

— >

 Can Reply to Your Statements

When you run it types an arrow to let you know that it is ready for
you to type your statement, then calls is given the
statement you type as its input. is recursive so this process continues.

 prints two responses to your statement. First, it turns
around your statement; if you say that you love something, says
that it hates it, and if you say you hate something, says that it
loves it. Second, it makes a statement about the opposite of the object you
mentioned.

The procedure sees whether its input is or
and outputs the other one.

8 W O R D P L A Y

 something something

The Program Keeps Track of Opposites

How does the program know that pepper is the opposite of salt? Somehow,
the program has to have this information stored. We use variables
to hold this information. For example, : is is
This is how we have chosen to store the facts the program "knows." We call
this a data base. You can look at the data base for the program by
looking at all the variables in the workspace. Try:

These variables are loaded into the workspace with the pro-
gram.*

To find out the opposite of something, for example we can say

or

What if we want to find out the opposite of There is no easy way
to find out it is unless we have another variable named
with value So we can say

We have set up a convention in our data base that we always put in both
parts of a pair. That way, we don't end up in the funny situation where it

*If you type in the procedures and there are no variables in the workspace, ARGUE will
create these variables when it asks you for the opposites of things.

A R G U E 9

is easy to find out that the opposite of is but impossible to
find out what the opposite of is. Our mental concept of opposite is
that it "goes both ways," so we make our data base reflect that.

How the Procedure Works

With this kind of data base we can write a procedure to output the opposite
of something. Here is a possible first version of the procedure:

This is a good example of needing to use rather than dots(:). The
word of which is trying to find the value is whatever : is.
For example, if : is the word then the program is trying to
find : It must do this indirectly by using

This first version of has a problem. It only works for words
that are already in the data base. If you make a statement like

 and there is no variable named then this
procedure will get an error. To solve this problem, we use to check
for the existence of a variable named by : In this example

 is the word the program checks whether there is already
a variable named If there isn't, you'd like the program to learn
the opposite of and put it in the data base. Then it can go ahead
and argue with you about sunsets. The procedure does this.

 calls when it needs to.

When tries to find the opposite of a word that is not in the
data base, it asks the user for the opposite. After the user types the opposite,

 passes both the problem word and its opposite to
 puts that pair of words in the data base.

Now Can Argue Pretty Well

So can keep going as it adds new words to its data base.

30 W O R D P L A Y

and so on.

If we look at the data base after this, we can see what has been added.

and so on.
In order for the program to "remember" this data base, these variables

must be saved by SAVEing this workspace on a diskette.

SUGGESTIONS

The program assumes that the sentences you type in are going
to be exactly in the form

or

If they are not, an error occurs and the program stops. You could improve
the program so that it checks for the right kinds of sentences and asks you
to retype them if there are problems.

Maybe it could know about more emotion words such as

If you try:

the program will say:

and ask you for the opposite of It will ignore the You might
make a better arguing program that tries to figure out if there is an adjec-
tive and finds its opposite, so it would do something sensible like

A N I M A L G A M E 1 1

 doesn't have any mechanism for dealing with single objects
described by more than one word, like Perhaps a special
way to type these in might be added.

You might want to look at the Madlibs and Sengen projects for more
ideas that have to do with taking apart and putting together sentences. You
might want to look at the Animal Game project for an example of a program
with a different kind of data base that also appears to learn some simple
things.

PROGRAM LISTING

Animal Game

The animal game is a little like twenty questions: you think of an animal,
and the game tries to guess it by asking yes-or-no questions.*

What makes the game interesting is that it learns new animals. When
it can't guess your animal, it asks you to teach it the animal and its distin-
guishing characteristic. By learning new questions and new animals, the
game gets "smarter."

*This animal game is a popular computer game. It first appeared about ten years ago.
Since then many people have implemented it in various computer languages. This Logo
program was inspired by Bernard Greenberg's unpublished LISP textbook.

By William Weinreb.

32 W O R D P L A Y

Here's a sample dialogue between the computer and a person playing
the animal game. Everything the user types is boldface.

The player's secret animal is
"dog."

Here's where the game gets
smarter.

The player's secret animal is
"dog" again.

Here's where the game asks
the question it just learned!

Knowledge Grows on Trees

Below is a diagram of the knowledge the game might have after someone
has played it a few times. We call the diagram a tree, because it looks
something like an upside-down tree.

IS IT FURRY?

FROG

CAT

The tree is made of questions and animal names. Each question has a
"yes branch" and a "no branch." Each branch either leads to a question or
ends at an animal name.

By drawing what the game knows in the form of a tree, we can get a
more vivid picture of how the game works. For example, we can think of
the game as exploring the tree from its top. It always starts at the IS

ANIMAL GAME 13

IT FURRY? question. Its goal is to climb down the branches to an ani-
mal name. The animal it finally reaches is the one it guesses.

Let's play an imaginary game and trace the game's progress on the
tree. Our secret animal is "mouse."

The game's first question is always the question at the tree's top:
IT FURRY? Since a mouse is furry, we answer yes.

The game follows ?'s yes branch to the
 question. From the game can descend to either

of the furry animals, or but it can no longer reach the unfurry
animal, By descending ?'s yes branch, the game has
narrowed down its possible guesses to furry animals.

The game now asks the question mouse does not
bark, so we answer no.

The game follows 's no branch to the animal name
CAT. When the game reaches an animal name, it guesses that animal. Here,
of course, the game's guess is wrong. To improve its chances of guessing
right the next time, the game learns the player's secret animal. Before we
look at the learning process, let's examine how the game represents its
knowledge as lists.

Making Trees with Logo Lists

Consider the very simple tree below. Here we represent it as a list.

The tree is a list of three elements: a question, the question's yes
branch, and the question's no branch. In this case, the question is CIS

 its yes branch is and its no branch is
Both branches of the left tree below are animal names. Sometimes, as

we've seen, a branch does not lead directly to an animal name but to
another question that has its own two branches; it leads, that is, to another
tree or subtree.

For example, look now at the slightly more complicated tree. Here it
is represented as a list.

This slightly more complicated tree is also a list of three elements: a
question, its yes branch, and its no branch. The question is [IS IT

 its yes branch is the subtree
its no branch is the animal name

IS IT FURRY? IS IT FURRY?

CAT FROG DOES IT BARK? FROG

DOG CAT

34 W O R D P L A Y

Examining Trees

We can write procedures that look at each of a tree's three parts.
Sometimes we want to look at a subtree of a tree. Since a subtree is itself
a tree, these procedures work on subtrees too. The procedures all expect
a list of three elements as input.

Here's an example of how they work.

Exploring the Game's Knowledge

A N I M A L G A M E 35

Guessing and Learning

Guessing

 I f
 I f

Learning

 Adds to the Game's Knowledge

How does the animal game get smarter? Let's review the imaginary
game we played earlier. Our secret animal was "mouse," and the game
guessed Obviously, if the game had guessed "mouse" instead of
it would have won. We might want to change the game so that, from now
on, it will guess whenever it would have guessed

36 W O R D P L A Y

Look at the tree below. To make the game guess instead of
 we could remove (the wrong guess) from the tree and put

(the right guess) in its place.

IS IT FURRY? IS IT FURRY?

DOES IT BARK?

YES 3

FROG DOES IT BARK?

YES, NO

FROG

DOG CAT DOG MOUSE

Has the game learned? Not really. We've added a new animal to its
knowledge, but we've also subtracted one.

If we want the game's knowledge to include both and we
must teach the game a new question, such as

 We also teach it that if a player answers "yes" to the new question,
it should guess and if a player answers "no," it should guess

The next tree shows the result of adding a new animal and a new
question to the game's tree. Instead of replacing with we re-
place with a new subtree. The subtree—like all trees—consists of a
question]), a yes branch and a
no branch

IS IT FURRY? IS IT FURRY?

FROG FROG

Building a New Subtree

 and get parts for a new sub-

tree.

A N I M A L G A M E 37

Adding to the Game's "Tree of Knowledge"

The game's entire "tree of knowledge" is stored in the global variable
 For the game to get smarter, the new subtree must be added to

 and are the main procedures that do this.
uses which outputs a list of its three inputs.

Let's recall how is called. climbs down to an animal
name and passes the animal to calls to guess
the animal. If the guess is right, is called. If the guess is wrong,
is called.

 has three inputs. When it is called, : is the animal
the game guessed, and : and : are empty lists.

 calls to get the player's secret animal and
stores this animal in : It calls to get the
player's new yes-or-no question and stores it in : Then

 makes the output from
's four inputs are the game's current "tree of knowledge" and the

three parts for the new subtree. looks through the game's current
tree, finds the animal the game guessed, and replaces this wrong guess with
the new subtree. It then outputs a new, enlarged "tree of knowledge" to

Here's a sample set of inputs to

38 W O R D P L A Y

Starting the Game

ANIMAL GAME 39

If you ever want to erase the game's knowledge, stop playing the game
and call causes the game to forget everything it has
ever learned.

Other Procedures Used by the Game

All these procedures were mentioned earlier but we did not look at how
they work.

The input to should be an animal name. Its output is the
animal name preceded by an appropriate article—either "a" or "an."

 and get a yes-or-no answer to a question. The question
is the input to

Here's an example.

?

SUGGESTIONS

You can play this game with exotic animal names such as armadillo,
gnu, gazelle, iguana. You could even use fantastic animals like centaurs or
pushme-pullyous. Some people say that it's most fun to play it with the
names of your friends!

2 0 W O R D P L A Y

PROGRAM LISTING

•

D I C T I O N A R Y 21

Dictionary

The idea for this project came about while I was hiking with some friends.
During our climb up the mountain, we tried to stump each other by asking
the meaning of unusual words. I began to think about developing a diction-
ary project using Logo.

I wanted to be able to do several things with my dictionary:

• Add a new word and its definition.
• Print the definition of a word.
• Remove a word and its definition.
• Print the entire dictionary.

The Dictionary

My first task was to decide how to store the words. I decided that the
dictionary would be a list of entries. Each entry would be a list composed
of a word and its definition. Here are two examples.

or

I named the dictionary Here's how I created it.

Using the Dictionary

When you type the following is printed on your screen:

By Susan Cotten.

42 W O R D P L A Y

? -

>

 calls which checks to see if you already have a
dictionary. If you do not, creates one.

 has the job of figuring out whether the character you type
matches one of the expected commands. If there is no match or if you type

 prints the list of possible choices.

D I C T I O N A R Y 43

Adding a New Word and Definition

To add a word, you type while running Here's an example
of what happens.

>

If you try to add a word that is already in the dictionary, this happens:

 is the procedure that lets you add a new entry to the
dictionary.

 calls to see if the word you want to add is
already in the dictionary. If the word is not in the dictionary, then the word
and its definition become a new entry.

 has the task of finding an entry in the dictionary. It does this
by attempting to match an input word with the first word in each entry.

44 W O R D P L A Y

Printing the Definition of a Word

This is what happens when you type D.

EGREGIOUS

 then calls with the word to be defined
and its entry in the dictionary. If the entry is in the dictionary,

 prints the definition.

Removing an Entry from the Dictionary

To remove an entry, you type R. Here is an example.

FLUMP

 uses to output a dictionary, minus the un-
wanted entry.

D I C T I O N A R Y 45

Printing the Dictionary

Here's what happens when you type I've added some words that I
thought were interesting to the dictionary.

Note: At this point you press any key to see the next seven (or remain-
ing) entries.

T h e procedures and work
together to print in an easy-to-read format. There is room on
the screen for seven entries. counts the number of entries. When
the screen is full, pauses and waits until you type any character
before printing the next seven or remaining entries.

26 W O R D P L A Y

PROGRAM LISTING

[]

H A N G M A N 27

Hangman

 is based on the popular two-person pencil-and-paper game in
which one player thinks up a secret word and the other player tries to
discover what the word is by guessing what letters are in the word. A
gallows is drawn, and for each incorrect guess, part of a stick figure is added
to the drawing. The player who is guessing wins the game by guessing the
entire word before the stick figure is completed.

By Brian Harvey.

48 W O R D P L A Y

In this version, the program chooses the secret word and you do the
guessing. At each turn, you can guess either a single letter or the entire
word.

The secret word is shown as -A—E-. This means that it has six letters, two
of which have been guessed. You have made five guesses. and were
correct. The others, and were wrong. Because of these three wrong
guesses, the program has drawn the head, neck, and body of the person
being hanged. If you make more wrong guesses, the program will draw the
person's arms and legs.

I like this program because it combines text processing with graphics.
The top-level procedure divides the program into two parts: setting up and
playing the game.

Setting Up

 uses two main subprocedures, one to pick the secret word and one
to draw the gallows. outputs the secret word, which
remembers in the global variable To choose the word from a list
of possible words, uses the procedures and which
appear as examples in the Atari Logo Reference Manual.

Here is a picture of a game in progress.

- A - - E -
GUESSES: E T AO I
YOUR GUESS?

H A N G M A N 49

Variables Created by

The variable is one of several that are used throughout the hang-
man program to keep track of the progress of the game. For example, the
program must remember what letters have been guessed and how many
wrong guesses are allowed before you lose. Several of these variables are
given their initial values by

 The secret word.
 A

SPACES A word of eighteen spaces, which is typed to erase messages
from the program in the text part of the screen.

 The number of letters in the secret word that you have
guessed correctly. (If a letter occurs more than once in the
secret word, the number of letters guessed correctly may be
more than the number of correct guesses you have made,
because one correct guess may reveal several letters in the
word.)

Playing the Game

50 W O R D P L A Y

 calls repeatedly, checking between times to see if you've
won (the variable made or lost (no more left).
uses several subprocedures to display the current state of the game, read
a guess from the keyboard, and test the guess. A guess can be either a single
letter or the entire word. These cases are distinguished by checking the

 of the guess; if it's more than one letter, the procedure is
used to compare the guess to the secret word. Otherwise, the program
checks if you have already guessed the letter; if not, it checks to see if the
guessed letter is actually in the word. If the letter is in the word,
is called to update the number of letters correctly guessed. If not,
draws another piece of the body under the gallows.

Keeping Track of the Text Screen

The text part of the screen in the middle of a game might look like this:

In the top left corner is the display of the secret word, with some letters
already guessed and the others indicated by hyphens. In the top right
corner is the message area. You have just repeated a guess already made,
and the program has complained about it. The next line shows the list of
letters already guessed. The third line invites you to make another guess,
and the cursor is positioned for reading that guess.

The message area is maintained by the procedure SAY. Two subproce-
dures of show simple examples of how is used:

H A N G M A N 51

(The underlining in this listing represents inverse-video characters on the
screen.) The procedure types spaces into the message
area, erasing any leftover messages. The procedure is called by

 if you repeat a previous guess.
The rest of the text screen, apart from the message area, is maintained

by the procedure:

For each letter of the secret word, looks in the list of letters
already guessed. If this letter has been guessed, types it. If not,

 types a hyphen.

When You Guess a Letter

When you guess a letter (that hasn't been guessed already), calls
either or depending on whether the guess is correct or
incorrect. To test the correctness of the guess, uses which
is like the primitive except that it checks whether a letter is an
element of a word, instead of whether a word is an element of a list.

(Actually, would work equally well testing for membership in a list,
like but we need it only to check for membership in a word.)

If the guess is correct, the task of is to calculate a new value

52 W O R D P L A Y

for the variable which counts the number of correctly guessed
letters in the secret word. We can't just add 1 to because the letter
you guessed may appear more than once in the secret word. For example,
if the secret word is "thrush" and you guess must add 2 to

 So must examine each letter of the secret word.

Note that does not actually display the newly guessed letters on the
screen. This will be done by the next time through

What Happens on a Wrong Guess

If the guess is incorrect, is called to count down the number of turns
until you lose and to draw part of the body under the gallows:

The command is used to select a subprocedure to draw the appropriate
part of the body, based on the number of tries remaining. For example, the
variable is initially 7, and the procedure draws a head.
draws the neck, the torso, and the arms, and and

 the legs:

H A N G M A N 53

54 W O R D P L A Y

procedures might be called with the turtle at the end of the gallows, rather
than at the end of the previous body part.

When You Guess a Word

We have looked at the procedures that deal with a guess of a single letter.
You may also guess the entire word; if so, the procedure calls

An incorrect guess of the entire word is handled by just like an
incorrect guess of a letter. But if you guess the entire word correctly, there
is no need to call We can simply call because you have won
the game.

When You Lose the Game

We have now looked at all the procedures involved in playing the game,
up to the point of winning or losing. The case of losing is easier to under-
stand. You lose by running out of tries. This means that the entire body has
already been drawn.

H A N G M A N 35

The program tells you what the secret word was, moves the cursor down
to the last screen line, and fills in the already-drawn head with a frowning
face. When the program stops, Logo will print its prompt on the last line
without obscuring what is written in the text area. is called only by

 which then stops, returning to which stops. So when
stops, the entire program is done.)

When You Win the Game

What if you win? In this case, the body is not yet entirely drawn. We want
to erase the gallows, finish drawing the body, notify the winner, and stop
the program.

36 W O R D P L A Y

Utilities

PROGRAM LISTING

H A N G M A N 3 7

3 8 W O R D P L A Y

MATH: A SENTENCE GENERATOR

Math: A Sentence Generator

When we think of computers making up sentences, we most often think of
them making up English or French sentences. We rarely think of them
making up math sentences. This project is about developing a math sen-
tence generator. It is set in the context of developing an interactive pro-
gram. A sentence is made up in the form and the user is
asked

The first example involves only addition sentences. Then the program
is modified to include multiplication, subtraction, and division. Later the
program is changed once more to vary the form of the math sentences and
keep track of the number of times the user responds to the same question.

I boldface what the user types.

As the example shows, makes addition sentences of the form
 and not of the form Later we will change so

that it uses both forms.
 randomly chooses two of the integers to be used in the math

sentence. then presents the addition problem and checks on your
answer. The numbers chooses are less than ten, but you can easily
adjust the procedure and make the numbers larger.

In the addition sentences, the value of is : which is the second
input to The sum of the two inputs is computed

There are different ways to expand this program. You could design the

By Cynthia Solomon.

60 W O R D P L A Y

program so that it gives you three chances to get the answer right. You
could expand the program so that it gives you problems in subtraction,
division, and multiplication. You could make it keep track of the number
of problems you do and the number you respond correctly to. You might
decide to help the user. Some of these suggestions are explored in the next
section.

Making Subtract, Multiply, and Divide

One way to extend is to make three more procedures,
 and

Try these procedures to see if there are any bugs. Modifying is
a good way to try these new procedures.

MATH: A S E N T E N C E G E N E R A T O R

What do you think? The program seems to work, but there are some
possible problems. For example, in the subtraction sentences might have
a negative value. Perhaps you want to use this program without negative
numbers for answers. We can adjust so that the value of is
always positive.

Notice that the sentences are of the form The form
 might be easier to solve, and so you might want to make sent-

ences in that form.
There is a potential bug with multiplication and division. For example,

division by 0 will cause Logo to stop the program and print out an error
message. Attempts to divide by 0 must be prevented. One way to make sure
of this is to add one to the random number used as 's second input.
Multiplication by 0 can cause a different sort of problem when you try to
figure out what is.

Although the preceding examples do not show being a fractional
number like .5, it is possible. You might want to guard against that happen-
ing. Since the sentences are generated by the program, we can make sure
that the computation is performed so that is always a whole number.

In the next section is extended to include some of these ideas. The
procedures are rewritten. new procedure is introduced called It
is used by and to print out the sentence
and get the user's response to what is.

Extending

In this section, the first extensions to guard against multiplication or
division by 0 and give the user three chances to figure out what is. All
math sentences are still written in the form and expect
integer answers. The program generates two random numbers and then
computes a third. Here is an example of the program in action.

Now you type Logo responds:

If you type anything else, Logo responds:

You are given three tries to get the answer. If you are still wrong, Logo
responds:

62 W O R D P L A Y

 has present sentences in subtraction, multiplication, and
division as well as addition.

After computes : takes over the job of printing out
the sentence and checking the user's response.

 gives the form [=] as its first input. The second input
represents the number of times the user responds to the question

 and : are used by 'S subprocedures

 and The variables are not given as inputs to or
its subprocedures. As far as these procedures are concerned, these are
global variables. The value of is still :

 prints the mathematical sentence with the help of
After the sentence is printed, asks for the value of It then turns
the job over to along with the user's response.

(\ is the way to quote special characters like space. prints two
spaces after the question mark.) plays an important role. It deter-
mines what to do next. If : is empty, assumes this is the user's
signal to do something else and so calls If : is not the same as

 then calls adding 1 to : unless this is the
user's third try. On the third try gives the answer.

M A T H : A S E N T E N C E G E N E R A T O R 63

The procedure is similar to in structure.

A couple of tricks are used here so that will work for
 and is always t h e value of

is always on the left side of the equals sign and : is always on the
right of the equals sign. What does change is which of these numbers are
inputs to a procedure and which are computed in the procedure. For
example, computes the value of while : and :
are inputs. But the value of is still :

Extensions

There are many modifications you might want to make to this kind of
program. The modification I chose is to allow sentences to be in either of
two forms.

The changed procedures follow. Notice that the decision as to which form
to use is based on whether outputs or

64 W O R D P L A Y

The new forms for and are

When generates a sentence in the form its
inputs, : and : are added together to be : In the exam-
ple is and : is

When the sentence is in the form then computes
 by adding the inputs : and : In this case : is

 and : is

M A T H : A S E N T E N C E G E N E R A T O R 4 5

PROGRAM LISTING

W O R D P L A Y

Number Speller

This program takes a whole number as input and outputs the number
spelled out in words.

The general idea is to divide the number into groups of three digits.
For example, the number 1234567890 is 1 billion, 234 million, 567 thou-
sand, 890. For each such group we must spell out its three-digit number and
also find the word (like "million") that indicates the position of that group
in the entire number.

Spelling a Group of Three

Let's start by writing a procedure, that spells out a number
of up to three digits.

?

Subprocedures and select words corresponding to
a particular digit in different positions. DIGIT selects words like "three";

 words like "thirteen"; and words like "thirty."
The first instruction in deals with a nonzero hundreds

digit of the group, if any. Next, a possible leading zero is eliminated from
the group. Then the procedure recognizes the special case of a number
greater than ten and less than twenty. These numbers are special because
they are represented all in one word, like "thirteen." Other two-digit num-
ber's are represented by one word for the tens digit and one for the ones
digit, like "eighty seven." If the number isn't a teen, the procedure then
deals with its tens digit and its ones digit separately.

A trick used in looks like this:

Here is an example:

By Brian Harvey.

N U M B E R S P E L L E R 67

If the predicate tested by is the value of this expression is the
empty list (11), so it contributes nothing to the final result when combined
with other things using

 outputs the empty list, not the word if its input is
0. This is okay because we want to say "zero" only if the entire number
we're spelling is 0, not just one group. (Remember that the reason we wrote

 for numbers up to three digits is that groups of three are the
building blocks of larger numbers.) For example, the number 1000234 is
spelled "one million two hundred thirty four," not "one million zero thou-
sand two hundred thirty four." We'll have to remember to notice, later on,
if the entire number we're spelling is 0.

Here are the procedures that select the words for each digit.

These use the common subprocedure

Spelling a Large Number

Now we have to divide a large number into groups of three, so that we can
use on each of the triads. One complication is that in dealing
with very large numbers, we can't rely on Logo's arithmetic operations,
because if we do, the numbers will be rounded off. Logo ordinarily handles
numbers only up to ten digits without rounding. We'll use Logo's word-
manipulation operations. For example, if we're spelling out the number
12345 and want to find the rightmost group, we'll do something like this:

rNUMBER is 12345

In other words, we must treat a large number as a word that happens to
be composed of digits instead of letters.

Note: In order to convince Logo not to round off numbers longer than
ten digits, you have to type them in with a quotation mark like this:

68 W O R D P L A Y

We can work up from One thing we need is a procedure
to combine a spelled-out group with the name of its place in the complete
number (thousand, million, etc.):

The test for : is there to deal with cases like 1000234, where the
entire thousands group should be omitted.

At this point, it's important to decide whether we are working on the
number from left to right or from right to left. The most obvious thing is
probably left to right, because that's the way we actually read numbers,
starting with the leftmost group. That's the approach I took the first time
I wrote this program. But it turns out to be much simpler to write the
program if we start from the right. There are two reasons for this.

The first reason is this: suppose you see a long number like 123,456,-
234,345,567,678,346,765,654,987. What is the name of the place associated
with the leftmost group? To answer that question you have to count the
groups, starting from the right. The 987 group is the ones group, the 654
group is the thousands group, the 765 group is the millions group, and so
on. So in a sense we have to start from the right in order to know what to
do with the 123 group on the left. The second reason is related to the first.
Sometimes numbers are written with commas separating the groups. But
in Logo we don't use commas inside numbers this way. Suppose you see a
number like 1234567890987654321. What is the leftmost group? You might
guess 123, but that would be true only if the number of digits in the entire
number were a multiple of three. Actually, this number is 1 quintillion 234
quadrillion and so on. In order to know the number of digits in the leftmost
group, we have to count off by threes from the right.

Working from right to left, the overall pattern of the program will be
more or less like the following. I've written this in lower case to emphasize
that it isn't a completed Logo procedure.

Two things are missing from this partially written procedure. First,
there is no stop rule to tell the procedure when it has reached the end (the
leftmost end, that is) of the number. Second, we haven't provided for the
place-name input to The solution to the first problem is that when
the number of digits in the number we're spelling is three or fewer, we're
down to the last group. The solution to the second problem involves provid-
ing a list of group place names as another input to this partly written
procedure. Putting these things together results in two procedures.

N U M B E R S P E L L E R 49

The top-level procedure, SPELL, recognizes the special case of the number
0. In its subprocedure 1, two auxiliary procedures are used that we
haven't written yet. and are operations like and

 but they output (all but) the last three letters of a word instead
of (all but) the last one. Here they are:

SUGGESTIONS
• What do you have to do to make this program spell out numbers in

a language other than English? The main thing, of course, is to
change the lists of words in and But what
structural differences are there in different languages? For example,
in French there are no special names for 70 and 90. Instead, numbers
are added to the names for 60 and 80. That is, 70 is "soixante-dix,"
or "sixty-ten"; 73 is "soixante-treize" or "sixty-thirteen." (This is true
of French as spoken in France; the dialect of French spoken in
Belgium does have special words for 70 and 90!)

• Can you modify the program to spell out numbers including a deci-
mal fraction, so will output

 What about exponential notation, so that
 will output

• What about translating to or from Roman numerals? In what ways
would a program to do that be similar to this one? How would it be
different?

• What about translating backward? That is, write a program that will
accept a list of words representing a number and output the number.

PROGRAM LISTING

50 W O R D P L A Y

Drawing Letters

This project lets the turtle draw letters using a multiple-segment system
like that of digital watches. It illustrates Logo's list processing capability and
the use of with program-generated Logo instructions. That is, instead
of just carrying out procedures that were written ahead of time, this pro-
gram actually assembles lists of Logo instructions and then carries out those
instructions to draw the letters.

Drawing Letters in Segments

Digital watches, which only have to display digits, generally use a seven-
segment system.

3

I l I J J U L L IUU
I J II J I J I J I I J I

Seven-segment display digits

By Brian Harvey

D R A W I N G L E T T E R S 5 1

To display all the letters of the alphabet, I chose to use a twenty-
segment system, illustrated below.

3 12

A // \ I I I
/ I I I I

/ \

IX _ J I I /
X _ x V I A

Twenty-segment display for letters

/ X /
X / _ _ / _

/ / / / i r ' / r

\ /

Z_

Of course, it would be possible to write a separate procedure for each
letter, giving explicit turtle motion commands to shape the letter precisely.
The advantage of the segment idea is that it makes it possible to write a
single program, then design the individual letters very quickly. For exam-
ple, after I had finished the letters of the alphabet, it was very easy for me
to add the ten digits, even though I hadn't planned for them initially.

Twenty-segment digits

I could have written twenty procedures, one for each segment. Each
would start from a "base" position, move the turtle to one end of the
segment, draw the segment, and return to the base position. Then each
letter could be described as a list of numbers, identifying the segments that
are used to draw the letter. Instead, I chose to try to find some regularities
in the way the segments are arranged. I divided the twenty segments into
five groups of four each. In each group, the segments can be drawn in a
single continuous path, without drawing any segment twice. (I would have
liked to be able to draw the entire group of twenty segments continuously
without duplication, but that's impossible.) Four of my five groups are
identical in shape; the fifth is special.

The five groups are numbered in a specific order. Within a group, the
segments are also numbered in a specific order; this is shown in the next
figure. The program is written so that it draws segments in this order. That
is, to draw a letter, the program first draws the four segments that make up
the arrow-shaped group in the top left corner. Then the program goes on

Dividing twenty segments into five
sets of four each

5 2 W O R D P L A Y

2 / \ 4

Order of segments within a group

Drawing an A

to the second group, the arrow-shaped one at the bottom left, and so on.
Within each group, the program first draws segment 1, then 2, 3, and 4.

Not all segments are used in every letter, of course. Therefore, the
turtle lifts its pen while tracing some of the segments. For example, con-
sider this representation of the letter A.

The variable contains a list of five lists. Each of these smaller lists corre-
sponds to one of the five groups of segments. The first sublist is
this means that the turtle's pen should be up during the first segment and
down during the second segment. (There could be up to four words in each
sublist. In this case, since there are only two words, the program will stop
tracing the first group of segments after the second segment in the group.)
This figure shows how the program draws the letter A; compare it to the
list just given.

The Letter-Drawing Procedures

The procedure draws a letter. It takes two inputs. The first is a list
like the one stored in the variable the second is a position, that is, a list
of two numbers. The letter described by the list is drawn at the position.
(Actually it is the lower left corner of the letter that is at the given position.)
For example, if we have defined the variable as just given, we could say

Here is the procedure:

The procedure uses a subprocedure The second
input to is a list that describes the overall layout of the groups
of segments. Like the letter descriptions, it is a list containing five lists. But
each of the five lists has only two elements: the starting position of the group
of segments and the name of a procedure to draw the group of segments.
This procedure is called for the first four groups and for the
fifth group. The "position" of the beginning of the segment group is actually
relative to the position of the letter as a whole, not an absolute screen
position. For example, if the position of the letter is [23 47] and the
relative position of the third segment group is then the actual
screen position for that group is

[0 24] [9 24] [23 71] [32 71] = [23 47] + [9 24]

[012]
[912]

[23 59]
[32 59]

Starting points of segments in
relative coordinates

[23 47]
Starting points of segments for a
letter drawn at P 0 S = [23 4 7]

D R A W I N G L E T T E R S 73

To know why the position numbers are what they are, you must know
that I chose to base the segment lengths on a 3-4-5 right triangle. The
horizontal segments are 9 turtle steps long, the vertical ones 12 steps long,
and the diagonal ones 15 steps long. This conveniently makes all the

 commands use whole-number inputs. It is also a reasonable shape
for the overall letters.

The procedure has three inputs. The third is the position of
the letter. The first two are both five-element lists of lists. One is a letter
description; the other is the overall layout description. The job of

 is to match each element of the letter with the corresponding
element of the description. It invokes the subprocedure with
these sublists as inputs:

Let's see how this works with a particular example. Suppose we ask
Logo to draw the letter A with this instruction:

This ends up invoking this way:

Then invokes five times.

Each element of the list that is specific to the letter A (for example,
 is matched with an element of the list that describes the layout of

letters in general (for example, [[

Drawing Each Segment Group

Remember that each sublist of the template (the overall layout description)
has two pieces: the relative position of the group and the name of the
procedure that draws the group. first has to position the turtle,
then invoke the correct procedure. To position the turtle, uses a
subprocedure called which adds two position lists just as we did a
few paragraphs ago. Then it uses the command to invoke the procedure

 or as the case may be. These procedures take the letter

74 W O R D P L A Y

description sublist as input, so the procedure name must be linked with that
list to form the Logo instruction for RUN.

For example, the first use of in drawing the letter A in our
example is

This is equivalent to the following Logo instructions.

This is, in turn, equivalent to

The tricky (but exciting!) thing to understand here is that the instruction
 doesn't actually appear in any Logo procedure in this

program. Instead, this instruction is put together as the program is run.
 combines the word (which it found in the template list)

with the list (which it found in the letter description list) into
one big list. It then uses the command to interpret that list as a Logo
instruction. We'll use the same trick again later.

The procedures and have to follow a certain path, set-
ting the turtle's pen up or down between steps as specified in the letter
description. They use a common subprocedure which knows how to
do that. One of the inputs to is the letter description sublist with the
PU and PD commands; the other input is a list of four Logo instruction lists,
one for each segment of the group.

D R A W I N G L E T T E R S 75

Here is how this works out in our example with the letter A. The five
invocations of listed earlier result in four invocations of and
one of

We'll look at the first invocation of in more detail. invokes
 like this:

Just as paired elements of its list inputs, so does It ends up
executing these Logo instructions:

There might have been up to four of these RUN instructions, because there
are four segments in an group, but in this case there were only two
pen commands in the input list : If we look at what the instruc-
tions actually do in this example, we see that the final effect is just as if the
procedure contained these instructions:

This is a straightforward series of turtle graphics commands. Again, though,
it's important to understand that that series of commands is not actually
part of any procedure. Instead, the commands were generated by the
procedure by putting together pieces of its inputs.

Final Details

Here is the subprocedure of that turns the relative posi-
tion of a segment group into an absolute position:

Finally, the procedure takes an entire word as input and draws the
letters in that word one by one. It's used like this:

and here it is.

76 W O R D P L A Y

Here are the definitions for my letters:

SUGGESTIONS
• Make up descriptions for the twenty-segment digits shown near the

beginning of this write-up.
• The letter L is described very efficiently by this scheme; the turtle

takes no unnecessary steps to draw it. The letter A, on the other
hand, is not very efficiently described. Each in its description
represents a step that the turtle takes without drawing anything; to
draw six strokes, the turtle travels over fifteen segments. Can you
work out a way to group the segments that makes more letters more
efficient? (I don't have any secret answer to this; I haven't tried it
myself.)

• Modify the procedures so that the size of the letters can be varied.
You could have an input called and use for the hori-
zontal segments, and so forth.

• Modify the procedures so that the aspect ratio of the letters (the ratio
of the vertical segment length to the horizontal segment length) is
variable. This is much harder; in general, it requires using trigonom-
etry.

• Make up descriptions for lower-case letters. This may require chang-
ing the whole arrangement of segments, since some lower-case let-

D R A W I N G L E T T E R S 5 7

ters have descenders. That is, they extend below the baseline of the
capital letters. These letters are g, j, p, q, and y. Manufacturers of
computer terminals don't always use descenders for lower-case let-
ters. Some avoid it by printing those letters higher than they should
be; others just use SMALL CAPITALS instead of lower case.
Without changing the letter descriptions, change the shapes embod-
ied in the procedures and See if you can invent an
interesting new alphabet this way.
Modify the procedures so that you can write words at an angle, not
just horizontally across the screen.

LISTING

5 8 W O R D P L A Y

Mail

When I was a kid in school, my friends and I liked passing notes to each
other. It was reflection on this experience that inspired me to write a mail
program. In those olden days, the suspense was great as we waited to see
if we could send messages from one side of the room to another without
getting caught. With this modern method of letting Logo be the mail
carrier, students today find different pleasures.

Using the Program

Since Logo has no mail system of its own, I decided to build one. The
essential actions are sending and receiving mail. This project is just one
example of an electronic mail system, rem.

The program assumes that you have a disk on which daily mail can be
saved. For convenience, you should reserve one diskette specifically to hold
the mes^lges and the mail program.* To start the program, type You
will get a screen that looks like this:

* You may also change the mail program so that you can use a cassette recorder. Then
you would save to the cassette instead of to the disk.

By Annette Dula.

M A I L 59

Sending Mail

If you want to send mail, type S.

> .

First you are asked who the message is for. A prompt (>) appears, and
you type in the name of the person to whom you want to send mail. You
are then asked who the message is from, and you type in your name. Next
you receive instructions. After you type in your message, you are asked if
you really want to send it. If you do, you are informed that the message is
in the mailbox.

Reading Your Mail

To read your mail, type R.
You are asked to type in your name. Once you do, your messages

appear on the screen.

80 W O R D P L A Y

After reading each message, you are asked if you want to delete it. If
you type that message is deleted.

Reading All the Mail

If for some reason you want to read all the messages that have been
written, type A.

After each message, you are asked if you want to see more messages.
If you type you see another message, otherwise you exit from reading all
messages.

Other Commands

 Automatically saves all messages on the diskette. You are asked if the
mail disk is in the drive. If you type the program and all messages
are saved on diskette; otherwise the program stops.

 Stops the program.
Deletes all messages.

Structure of the Mail Program

The Data Base

All the messages are organized into one list named For
example, : might look like this:

M A I L

Each message is itself a list of lists.
The first message in this example is

This message contains four sublists:

The first is
T h e second is
The third is
T h e last is

The word and the receiver's name make up the first list in each
message, while the word and the sender's name make up the last list
in the message.

The Main Procedure

 is the main procedure of the program. It displays the help text,
gets a character command from the user, and checks to see if the command
is valid. If it is, it calls the appropriate procedures to carry out the actions.
These procedures are

 and

 puts the menu of possible actions on the text screen.

82 W O R D P L A Y

Sending Mail

 is the main procedure for sending mail. First it asks for the
name of the person who is to receive the message. It then asks for your
name (the sender). You are then given instructions for typing the message.
Finally you are given a chance to change your mind about sending it. If you
decide that you want to send it, the message is included in the list of all
messages.

 uses four subprocedures:
 and

M A I L

 A "

Reading Your Mail

84 W O R D P L A Y

Reading All the Mail

M A I L 65

Saving on the Diskette

 saves on the disk. First it reminds you to put the disk in the
drive.*

Reinitializing the List of Messages

 clears all messages from the list of messages.

PROGRAM LISTING

*If you are using a cassette instead of a diskette, you must change the last instruction in
DISK. DUMP so that it saves to a cassette: IF RC = "Y [SAVE " C : l

66 W O R D P L A Y

[]
[* » » * « • •

W O R D S C R A M 67

Wordscram

A Word Guessing Game

 picks a word, scrambles the letters, and shows you the scram-
bled version of the word. Your job is to guess the word. (In this sample game,
the word is chosen from a list of thirty or forty technical Logo terms.)

 helps you by showing which letters in your guess are in the
correct spot. You can also type if you need a hint, or if you want
to give up. Here is a sample of in action.

By Keith Sharman.

88 W O R D P L A Y

RE Two letters correct.

Get a hint.
Computer responds.

 and not correct.

 ! Got it!
 ? Y

 give

Program ends.

Scrambling a Word

The heart of is It takes a word as input and outputs
a scrambled version of it. The strategy goes something like this. Let's say
the word to scramble is "draw."

1. Pick a letter from the word at random.
2. To make sure that the letter does not get picked again, remove it

from the word.
3. Join the letter just picked to the result of scrambling the remaining

letters of the word. Continue until there are no more letters left.

Using the word "draw" as an example, we might get this result:

W O R D S C R A M 89

The assembled word is "wrad."
 picks a letter from the word, then uses that letter in two

ways: it removes the letter from the word (to get the input for the recursive
invocation of and it sticks the same letter back onto the begin-
ning of the scrambled word. To make this work, after picks a
letter, it invokes a subprocedure, 1 ,whose second input is the
letter to remove from the word.

Here is how and 1 interact, in the same example
we looked at before.

Removing a Letter from a Word

 takes two inputs, a letter and a word. It compares the input letter
with each letter of the input word. When it finds a matching letter, it
outputs the word with that letter removed.

90 W O R D P L A Y

1

REMOVE works by comparing the input letter with the first letter of the input
word. If they match, then the BUTFIRSTof the word is the output we want.
Otherwise, the output is formed by joining the first letter of the input word
with the result of REMOVEing the input letter from the rest of the word.

TO REMOVE :LETTER :W0RD
IF : LETTER = FTRST :W0RD [OP BF :W0RD] Send back the rest.

Here is how the preceding example (using RECURSION as the word) hap-
pens.

The remaining procedures in this program are straightforward and
won't be explained in detail. You can look at the program listing to see what
they are.

SUGGESTIONS

Here are a few ideas for changing WORDS CRAM.

• Change the list of words it knows.
• Tell the player how many guesses it took to get the word.
• After the player guesses the word, ask if she or he would like to see

the definition of the word. Since WORDSCRAM's words are technical
Logo terms, this would be an interesting way to learn about Logo.

• Add some new messages.
• Do some psychology experiments. Some words look very strange

when scrambled. Does this "strangeness" vary from person to per-
son? Some people are better at unscrambling words than others.
Why? What sort of strategy do you apply to unscrambling a word?
Does it resemble other problem-solving strategies you use?

W O R D S C R A M 7 1

PROGRAM LISTING

SEE IF THE USER WANTS INSTRUCTIONS

STARTING THE GAME PLAY

72 W O R D P L A Y

SCRAMBLING THE WORD

GETTING THE USER 'S GUESS

W O R D S C R A M 93

CHECK THE GUESS FOR CORRECT AND INCORRECT LETTERS

TO ADDGUESS :GUESS
MAKE "GUESSED.WORDS LPUT :GUESS :GUESSED.WORDS
END

TO COMPARE :GUESS :C0RRECT
IF (OR (:GUESS = ") (:C0RRECT = ")) [PR [] STOP]
IF ((FIRST :GUESS) = (FIRST :C0RRECT)) •

[TYPE [*]] [TYPE [?]]
COMPARE BF :GUESS BF :CORRECT
END

HINT AND HELP

IF (

MISCELLANEOUS PROCEDURES

7 4 W O R D P L A Y

.]

Madlibs™

This project plays the game of Madlibs.* The program asks for words or
phrases with which to fill in the blanks in an already-prepared story. Then
it prints the resulting story.

*"Madlibs" is a trademark of Price/Stern/Sloan.

By Brian Harvey; story template by Susan Cotten.

M A D L I B S 75

Here is an example of a story to be used with the program.

t i m e o f d a y p e r s o n way t o m o v e

p e r s o n an i m a 1

p e r s o n

way t o m o v e

a n i m a l p e r s o n

p e r s o n p e r s o n

a n i m a l p e r s o n

b o d y p a r t p e r s o n

p e r s o n a n i m a l

Here is what happens when you use the program with this story.

7MADLIB :ST0RY1

DUSK

URSULA

JUMP

RAT

96 W O R D P L A Y

How a Story Is Represented

 story is represented as a list that contains words and lists (which we'll refer
to as sublists). The sublists are the blanks of the story. Here is the list that
represents the preceding example.

Each word or phrase that the user types to replace a blank is given a
name, so that the program is able to remember it. The named phrase can
be used to fill more than one blank. The sublist

signals the program to type

and to give what the user types the name Later the sublist
 appears in : without the prompting phrase

 This signals the program to fill the blank with the word or phrase
named without asking for a new motion.

The Procedures

The top-level procedure is

 invokes and prints its output, which is a story list with the
blanks filled in.

The job of is to go through the story list, one element at a time.
If an element is a word, that word itself should be part of the output. If the
element is a list, it has to fill a blank. Here is the procedure.

M A D L I B S 97

This procedure has the overall structure of a recursive operation that
does something to every element of a list.

The first instruction is the end test for the input list being empty.
The next line checks for the case in which the first element of the list

is a word. In that case, we want to put the word itself in the output.
If the first element isn't a word, it's a blank to be filled. There are two

cases. If the list contains more than one word, like
 that means that the user must be asked for a to fill

the blank. The name for what the user types is the first word of the list,
 handles this interaction.

?

If the first element is a list that has only one word, like I , then
we use the word or phrase that was remembered under that name.

?

The last line of provides the output for both kinds of sublists.

Filling Blanks by Asking Questions

 has two tasks: it asks the user for a word or phrase, and it gives
what the user types a name.

By the way, this is a good example of the use of with a first input that
is not a quoted word. The name of the variable we want to set is part of the
story list and does not appear in the text of the procedure.

An elegant detail of is that it figures out whether to use
 or in prompting for a word or phrase. Here is the subprocedure that

does the figuring.

7 8 W O R D P L A Y

Handling Punctuation

If a blank to be filled is the last thing in a sentence in the story, there is the
problem of putting a punctuation mark at the end, without making it a
separate word. For example, in our story we have a sentence that ends

If the variable contains the word we'd like the finished
story to end

But if we don't treat this as a special case, the period will be a word by itself:

The solution I chose is to use an asterisk in the story to mean "take the
next two elements in the list and combine them as one word." That's a slight
simplification, though, because the next element may be an entire phrase,
and only the last word of the phrase can be combined with the punctuation
character that follows. The procedure that does the combining is this.

Here is a revised version of that uses

PROGRAM LISTING

M A D L I B S 99

