REPORT: LOGO Learning and Teaching Styles

TeacHING Younc CHILDREN To PROGRAM IN A LOGO TurTLE
CoMmPUTER CULTURE

Cynthia J. Solomon%*
80 Ellery Street
Cambridge, MA 02138

What programming knowledge and skills can a young child acquire? This question is no
longer shocking although it remains unanswered. Now that the computer presence is clearly.
a growing part of our lives, the notion that 6 and 7 year olds could learn to program does
not bring scorn and doubt into audiences' minds.

This paper describes a particular computer culture and enviromment in which young
children have learned to program. The child as problem-solver is discussed in terms of
three identifiable cognitive styles; and finally, some teaching strdtegies are suggested
which take into account these different learning styles.

The Computer Culture

"LOGO" is the name of a programming language, but it is also used as the name of an
environment, a culture, a way of thinking about computers and about learning and about
putting the two together. The environment is made of ideas, of things, and of people.
The things include not only the computer, but computer controlled devices like turtles.
There are mechanical turtles which move along the floor and are often equipped with touch
or light sensors, and there are also graphics turtles, which live on TV-like screens where
they draw in phosphor white or in multi-color. The computer system which gives life. to
all of this understands the LOGO language. The computer and the programming language
play a vital role in creating an exciting atmosphere where programs, people, turtles and
other computer controlled devices interact with one another and learn from one another.
In the environment people become researchers, and actions and ideas take on animate
qualities. Ideas from computer science like naming, procedurization, and debugging
become intermixed with anthropomorphic thinking to become lively tools in problem-solving

situations.

Different turtle types naturally develop distinct attributes, but there are also common
elements. For example, the turtle's state is its position and its heading. Its state can
be changed by either telling it to go FORWARD (or BACK) a number of steps or telling it to
turn RIGHT (or LEFT) some number of degrees. It can also leave a trace (PENDOWN) of its

path or not (PENUP).

* My thanks to Seymour Papert for his help over the years and his comments on this paper.

ACM SIGCUE BULLETIN July, 1978 ' p.20

REPORT: LOGO Learning and Teaching Styles

While the culture is closely tied to turtles, it is certainly more universal. The
turtles were invented as vehicles to convey this culture to beginners. They make certain
images more vivid and certain ideas more concrete. But the goal is to convey these ideas
and images, to make them real, comfortable, personal for a beginner of any age.

A Functional Description

Functionally, the LOGO environment is made up of the following:
(1) a computer
(2) a programming language and an operating system

(3) a collection of computer peripherals, usually including graphics and
turtles -

(4) a collection of projects

(5) a meta-language - a consistent way of talking about the language, the
Projects, etc.

(6) a relationship between teacher and learner
(7) a collection of "bridge activities" like juggling, puzzles, etc.

All of these components are interdependent and the special virtues of the environment
follow from their coherence with one another. Taken individually, they have no great
merit or utility. For example, one would expect very limited educational benefits to
come from teaching programming, even LOGO programming, in an "abstract" enviromment or
from using turtles as toys without a vision derived from the computer culture.

The design of the LOGO environment as a whole is strongly influenced by certain general

ideas of which three are particularly relevant to work with young children: procedurization,
anthropomorphization, and debugging. The following three sections discuss these in turn.

A Procedural View ofrthe World

A procedural view of the world touches upon all aspects of our culture. Taken in its
simplest sense, a procedure is a description of how to do something, and when applied to
the world, leads to a perception of complicated processes in terms of subprocesses. That
is, complicated processes are reduced to an interconnected cluster of simpler processes,
each of which can be clearly described. In the LOGO world, whether a child is learning
to walk on stilts or to juggle three balls or to make the turtle walk in a square, the
main intellectual activity is to look for a set of Procedures which, when knit together,
will do the job. The intellectual environment we are describing is designed to exploit
this commonality in order to channel prior real-world procedural knowledge into the
service of mastering the computer and also to channel whatever is so learned back into
improvements of knowledge about the non-computer world.

ACM SIGCUE BULLETIN July, 1978 p.21

REPORT; LOGO Learning and Teaching Styles

As a support to procedural thinking,emphasis is placed on giving words meanings, naming
processes, and making descriptions for how to do things. These ideas are embodied in LOGO,
the programming language. (A real attempt was made to minimize the formalisms of language
so as not to detract from naming, procedurizing, subprocedurizing, recursion. Further
work is needed here and become dramatically apparent in work with young children.)

An Anthropormorphic View of the Computer

Anthropomorphizing, "ascribing human characteristics to non-human things', has been a
natural way to understand aspects of the world. It can also be seen as a powerful problem
solving tool. Its pervasiveness is supported by the fact that we talk about a "LOGO turtle
environment" or a "computer culture" or "LOGO worlds", etc., and are understood. Turtles
themselves are concrete realizations of this thinking. On a more abstract level, programs
as well as turtles are looked at anthropomorphically. This gives rise to powerful
teaching strategies such as the use of metaphors like '"playing computer", "being the
turtle'", "being the procedure", "naming the actors and describing their roles", "teaching
the computer new words'", "teaching the turtle how to do something’. A further extension
of these teaching strategies is embodied in the idea of encouraging young students to
think of themselves as studying turtle behavior or computer behavior in order to learn
about themselves--both how they are the same and how they are different. Thinking in
terms of using what we know in order to teach the computer requires us to know some of
its essential attributes as well as our own, and at the same time feeds into and is
supported by a procedural view of the world.

Debugging

The important message that comes from ideas about debugging is that we learn from our
mistakes; that the intricate process of making things work or learning new skills has to

do with hypothesizing, testing, revising, etc.

When debugging is embedded in a computer world where procedural and antaropomorphic
thinking come into play the process becomes one of the most engaging activities in the
environment. Children collect, classify and enjoy bugs. Sometimes bugs are serendi-
pitously adopted as features worth perpetuating, sometimes procedures must be constructed
to deal with the phenomena caused by their appearance, and sometimes the bugs and their
side effect need to be removed. But in this pursuit, children become creative researchers

studying behavior, making up theories, trying out ideas, etc.

A Philosophy of Learning

To the extent that the children are really able to see themselves as "creative
researchers'", they are learning something much more important than using computers.
We believe that the computer when used as proposed here is the ideal carrier for this
self-image of learner-as-researcher.

This approach applies to teachers as well as students. When I teach LOGO, I honestly
see myself and the child as engaged in a genuine joint research activity: we are jointly
trying to understand what is happening in the unique situation created by this turtle
project. The exact situation really has never occurred before. It poses problems I have

ACM SIGCUE BULLETIN July, 1978 p-22

REPORT: LOGO Learning and Teaching Styles

never seen before. I do not know in advance what the answers are. One of the most
exciting discoveries made by the children is just that: '"You mean you really don't
know how to do it", exclaimed one child in amazement and in reaction to a hundred
remembered situations in which teachers put on the stance of "let's do it together"
while really knowing the answer in advance. For some children the prospect of an
honest relationship with the teacher is something new and inspiring. This environment
is especially good for developing such relationships because it is so '"'discovery rich".
One of my goals is to convey to other teachers the possibility of this "teacher-and-
student-as-research collaborators'" kind of relationship. The the extent that we can
achieve this, we see one way in which the effect of the computer presence goes beyong
"using computers'". Its real impact is on the total culture of which teacher and child

are part. .

The Skills a Child Might Use in Programming

Initial studies of young children allow me to construct a plausible list of skills
which a child might need in order to construct a program. For example, imagine a child
writes a program in LOGO to draw a face like

Such a project involves the following elements:
(1) Setting up a plan for the project
(a) didentifying the parts
(b) naming each part

(¢) picking a starting state for the turtle (in this case, starting at
the center greatly simplifies the plan)

(2) Using procedures conceptually, e.g., CIRCLE procedures

(3) Using inputs, message passing

(4) Scaling figures and rotating figures

(5) Debugging the design, e.g., recognizing deviation from the original plan
like eyes too big (so change input to circle); nose too far from center

(so either change turtle's heading or change turtle's position before
running circle procedure).

ACM SIGCUE BULLETIN : » July, 1978 p.23

REPORT: LOGO Learning and Teaching Styles

(6) Defining procedures formally (without inputs)

(7) Using define procedures as subprocedures

(8) Recursively défining procedures

(9) Debugging procedures, e.g., recognizing that an instruction is missing;
recognizing that a command is misspelled; recognizing that the numbers

input are revised.

I have observed all these elements in work with my first and second grade subjects.
Other elements of LOGO programming which have not been observed in such small children
but which seem to be worth trying to teach are:

(a) Defining procedures with inputs

(b) Using conditionals
(c) Using debugging aids

Developing Teaching Strategies in an Anthropomorphic Computer Culture

The development of teaching strategies as well as the accessibility of programming
skills are influenced by (and influence) how the system--the language, the devices, the
debugging aids--can be used or modified to enhance the learning process. In this process
the researcher must decide what key ideas are to be emphasized and must be ready to add
to them. This demands sensitive judgment in distinguishing those difficulties a child
experiences which are intrinsic to the conceptual material from those difficulties which
arise from unfortunate aspects of the formalism of the computer language. In this
situation, the enormous advantage of an extensible language like LOGO (or SMALLTALK)
becomes apparent: BASIC is BASIC is BASIC and nothing much can be done about it; the
interface between LOGO and the user.can be changed by a teacher who knows only LOGO
(i.e., isn't a systems programmer).

Such considerations guided the development of LOGO as a programming environment to
LOGO as a turtle based programming environment. We were able to take advantage of
turtles and anthropomorphic and procedural thinking in several ways.

In turtle graphics geometric shapes are described in terms of the knowledge the
turtle has about itself in relation to its world. It can go forward or back and turn
right or left. So can a child. The child can act like the turtle. Thus, if we tell

the turtle to

FORWARD 50 (steps)
RIGHT 90 (degrees)
FORWARD 50

RIGHT 90

FORWARD 50

RIGHT 90

FORWARD 50

RIGHT 90

ACM SIGCUE BULLETIN July, 1978 o p.24

REPORT: 1LOGO Learning and Teaching Styles

the turtle would trace out a square of side length 50. You would, too, if you carried

out those commands. Thus "playing turtle" follows from this. Being a turtle is a power-
ful heuristic and debugging principle and to put it into practice, children are encouraged
to walk in a square, observe their own actions, and translate them into turtle commands.

Playing turtle is also useful in encouraging children to "work through" puzzlement or
"cognitive dissonance". For example, the set of commands previously given will cause
the turtle to make a square no matter where it is positioned or headed. Since the child
might see the figure as a diamond or a "skewed square" playing with the procedure creates
interesting and provocative situations.

Once the child knows how to describe a square to the turtle, he must give the process
a name and link the name and the instructions together. Currently, if the child told the
computer to

SQUARE
the computer would respond
I DON'T KNOW HOW TO SQUARE
The "standard LOGO" formalism for remedying this to to define a new procedure by typing

TO SQUARE
10 D 50
20 RT 90 etc.

In my work at MIT with elementary school children I noticed that this process compounded
two difficulties: (1) the conceptual difficulty inherent in the idea of defining a
procedure; and (2) the accidental difficulty of remembering how to do this in LOGO. I
intloduced the idea of an interactive computer aid for this purpose. The aid is invoked
by typing the single word TEACH. It then prompts the child who can, so to speak, "teach"
the computer through the following transaction. I underline what the computer types:

TEACH
TEACH ME TO SQUARE
STEP 1: FD 50
STEP 2: RT 90

STEP 9: END
NOW I KNOW HOW TO SQUARE

Now the turtle can make a square and the computer understands the word SQUARE, the child
can use it to create a new design where SQUARE isused as another LOGO word:

TO FLAG -
1 FORWARD 50 -
2 SQUARE

END

ACM SIGCUE BULLETIN ‘ July, 1978 p.25

REPORT: LOGO Learning and Teaching Styles

And now FLAG can be used to create designs:
I . b
11

!
S
' !)

, . i
[; S

- 1 .
A
L.

As an extension of subprocedurizing, children are introduced to recursion. For example:

TO MANY-FLAGS

1 FLAG

2 RIGHT 10

3 MANY-FLAGS
END

To understand such a process, we ask children to play a "people procedure game". For
example: when I say WOW, raise you hand and then lower it. Now I will say WOW several
times. The next step is to change WOW, add a command: this time raise your hand, lower
it and tell yourself out loud to WOW.

We play this game for a while and then go back to turtle procedures and apply the séme
technique to the turtle.

At some point we extend ''people procedures" to serve as models for non-turtle
activities, "bridge activities" like learning to walk on stilts or juggle or solve
puzzles, where we develop procedures, execute them, debug them, and refine them to fit
individual learning styles.

Individual Styles of Learning and Teaching Strategies

In preliminary work, I have observed that different children take over the computer in
different ways. They show different learning styles, different paths into the computer
work. Undoubtedly this bare statement is true for all learning; what is special here is
that the plasticity of the computer allows the process to go further and become more
explicit. In working with computers there really are many paths to the same goal. More-
over, there are many equally great goals to pursue. Thus, children really do have to
express and explore their own intellectual styles.

Although each child has a unique intellectual personality and the use of the computer
allows us to respect it, we do, nevertheless, observe some regularities. I shall
describe three learning styles which have emerged particularly clearly not only from my
own work with young children, but from work recently completed at the MIT-Brookline LOGO
project by D. Watt in his teaching of 8 sixth graders over a six week period.

ACM SIGCUE BULLETIN July, 1978 p.26

REPORT: LOGO Learning and’Teaching Styles

Style 1: This child is a planner. He works from a complete formulation. For
example, he will design and implement a truck or a bear:

Q)

Style 2: This child uses building blocks, subprocedures, and experiments with
their possibilities. He arrives at some goal which is not predefined through a series of
trial and error steps. For example:

from to

0

Style 3: It is, perhaps, most difficult to develop teaching strategies for this
child since he defines his own goals which he will not verbalize. What he is exploring
and how he does it can easily be misinterpreted. His activities often look like turtle
scribblings. He may "'revert back" to changing the turtle's state by tiny increments or
he may use the same increments to all turtle commands (like FORWARD and LEFT) repeatedly.

The teaching methodology I have developed is based on a model of a child who, in the
LOGO turtle context, might use, though to different degrees, all three of these learning
styles. In our initial contact, I try to "plant seeds'" for all three. For example, I
encourage a beginning student to drive the turtle around the screen in a series of direct
commands with no goal other than to understand the turtle;s behavior in its environment.

ACM SIGCUE BULLETIN - ’ July, 1978 p.27

REPORT: LOGO Learning and Teaching Styles

But in the same initial session I suggest some concrete goal like: make the turtle walk
in a square or, perhaps, having placed some "squares" on the screen or blocks on the
floor, I ask the child to make the turtle touch them (knock the tower down, etc.). 1In
this I elicit primarily style 3 with some hint at style 1.

I facilitate style 2 by seizing on something interesting the child has just done and
suggesting "teaching" it to the computer. Thus I encourage the child to procedurize, and
thereby turn the turtle meanderings into repeatable patterns, procedures, building blocks,
and then use these procedures as subprocedures tocreate unanticipated designs.

The beginning student would very quickly be asked to choose a design from a collection
built from a subprocedure familiar to the child or create his own design, and then develop
procedures for getting the turtle to make the design. In this way children are exposed to
style 1.

I can illustrate both the pervasiveness of these styles and the way in which I work
with physical skills as bridge activities by the following anecdote in which we see the
same styles in two different domains. Mar and Sco, third grade children from the Roberts
School in Cambridge, Massachusetts, were learning to walk on stilts at MIT. Mar had been
very resistent to procedural thinking in his computing activities and now when he was
learning to walk on stilts he again refused to procedurize. He just wanted to get up and
get there and so tried to apply brute-force techniques. Sco, on the other hand, was
eager to use procedures in both cases. The result was: Mar, who prided himself on his
physical dexterity, was very much surprised when Sco, who was not so "coordinated",
learned to walk on stilts very quickly and very well. A side note on Sco: Although he
appreciated procedural thinking, he resisted global planning, of developing procedures
to accomplish a predetermined goal, until this experience. He was no less surprised
than Mar at his "victory" in the race to learn to walk on stilts, and carried the fruits
of his triumph for a long time.

References

Brown, John Seely and Richard Burton, Diagnostic Models for Procedural Bugs in Basic
Mathematics, BBN Rept. #3669, ICAI Rept. #8, Bolt, Beranek and Newman, Cambridge, MA

December 1977.

Davis, Robert B., "Selecting Mini-Procedures: The Conceptualization of Errors in Thinking
about Mathematics', J. of Children's Mathematical Behavior, Supplement No. 1,

Summer, 1976.

Goldberg, Adele and Alan Kay, Teaching Smalltalk, Xerox, Palo Alto Res. Center, SSL 77-2,
Palo Alto, Calif., June 1977.

Inhelder, Barbel, Hermine Sinclair and Magali Bovet, Learning and the Development of
Cognition, Harvard Univ. Press, 1974.

Papert, Seymour, 'Teaching Children Thinking', Mathematics Teaching, no. 58, Spring 1972.

Papert, Seymour and Cynthia Solomon, '"Twenty Things to Do with a Computer'", Educational
Technology, XII, 4, April 1972.

ACM SIGCUE BULLETIN July, 1978 p-28

REPORT: LOGO Learning and Teaching Styles

Papert, Seymour, Uses of Technology to Enhance Education, LOGO Memo #8, Mass. Institute
of Technology, Artificial Intelligence Laboratory, Cambridge, MA, June 1973.

Solomon, Cynthia J., Problem-Solving in an Anthropomorphic Computer Culture, A.M. Thesis,
Boston University, May 1976.

LOGO REPORTS AVAILABLE

The following reports are available in German from the LOGO research group in
Darmstadt, Germany. The work was done during the years 1974 through 1978. Please
write them at:

Forschungsgruppe CUU
Projekt PROKOP
Frankfurter Str. 24
6100 Darmstadt

West Germany

(1) Kling, U., et.al.: Computer as a tool in processes of active learning,
Progress Report. Describes work during the first research period from
1974 through 1976.

(2) Fischer, G.: The solution of complex problems by naive users through inter-
active programming. 1977 Approx. 250 pages. This thesis defines an integrated
view of computer science for naive users which emphasizes problem solvings,
model building and learning to learn. Part one analyses the role of arti-
ficial intelligence and computer science in educational applications and the
case studies of part two illustrate the derival basic concepts of programming
and problem solving. -

(3) Fischer, G.: Problem solving with the computer: Vol. 1. Introduction to
interactive programming, 1975. This collection of lecture notes and handouts
was prepared for a course about programming and problém solving with the
computer; it has been extended and may be used as a workbook to teach an
introductory course in a LOGO-like environment.

(4) Boecker, H. -D. & G. Fischer: Problem solving with the computer: Vol. 2:
Problems 1978, approx. 500 pages. This report consists of five parts and
presents detailed case studies of complex problem solving with the computer
in the fields of mathematics, linguistics, computer science, artificial
intelligence and gaming. They are based upon the theoretical work described
in part one of (2) and represent a collection of ideas and programming projects.

(5) Boecker, H.-D: LOGO-Manual, 1977, approx. 120 pages.
(6) Laurenze, A., U. Kling: Report on experimental LOGO course with 11 to 13 year

old kid. 1976. Approx. 80 pages. Course material, documentation and
evaluation.

ACM SIGCUE BULLETIN July, 1978 p.29

LOGO WORKING PAPER 26. Cynthia Solomon (with S. Papert)

October 30, 1974

A FIRST LESSON

Part I.
Preface
People often ask: "How do you get children started on LOGO?" There

isn't a simple answer. There are lots of routes to the computer. These
pages were written to show one route. They put down the kind of thing
we might say to a third grader in a one-to-one teaching situation.

The presentation is artificial in several ways. The presentation takes
the form of a one-sided dialog. What the child says or does is not
explicitly described. It is more "didactic", wordier than the interaction
with the child. Sone of what is said here, can be shown in the real
situation. Some of it can be guessed at by the child. We always take
full advantage of such opportunities. Readers are expected to interpret
what is written here in the spirit of these qualifications. The text
tries to set out what we might 1ike to get across to the child; which
parts are conveyed through words, actions pnd interactions are determined

by the individual circumstances.

The material covered is what one might call the pre-project part of
a LOGO TURTLE GEOMETRY experience. The goal is to bring the child as
fast as possible to the degree of mastery needed for rewarding success
in his own projects. But here also we are opportunistic rather than
rigid. If after the first ten minutes or two hours or whatever the
child seems willing and able to embark on a feasible project we Jjump

at the chance.

NOTATIONAL CONVENTIONS

The child communicates to the computer and thence to the turtle by
a typewriter terminal. When the computer is "listening" or has just
completed carrying out instructions this character appears on the

terminal paper:
?

When the child has typed¢ in a command and wants the computer to do it
the CR or RETURN key must be pressed. We shall use this mark to mean
press the CR key:

4
In this paper we will underline what the computer types to distinguish

it from what the student types.

The turtle lives on a TV screen not the typewriter terminal. The

terminal is connected to the computer as is the TV screen. Although

we often say we are talking to the turtle in fact we speak to the computer
and it converses with the turtle. Often children think each terminal

is a computer. Initially there is no problem with this, but Tater they
are surprised that their work can appear on any terminal provided they

properly identify themselves (to the computer).

FIXING TYPING GOOFS

If you typed something wrong 1ike FB instead of FD and want to erase fhe
letter use the RUBOUT key. The computer types out what it erases. You
can keep on RUBbing OUT or you can type new letters.

If you want to erase the whole thing press the BRK key.

A FIRST LOGO LESSON

We are going to teach a cdmputer turtle how to draw. Our computer turtle
lives on the TV screen and doesn't look much like a live turtle. If you

wdnt to see it in the middle of the screen you type like this

23)

There it is. a

Now let's make it move forward. Try typing the word "FORWARD" or just
FD for short with a number to tell the turtle how far to go forward:

Let's try 15

2 15) o

The word FORWARD is called a turtle command because the turtle obeys it

and the 15 is called the input. Try some other inputs.

The turtle always seems to go in the same direction. Next we want to turn
it so it can go to the side of the screen. There is a turtle command to

do this. Let's try it:

RIGHT 92? p

Now try

FD 102? ~D

Now

RT 90
p

What does the turtle do when it obeys the command RIGHT 907 It
changes the direction it is facing. Which way was it facing? It would
be easier to talk about it if we used names for direction. Then we

wouldn't have to point. Let's start again. Type

Cg) A

A1l the lines vanished! And the turtle is back in the center, facing that
way. Let's call that.way NORTH 1ike on maps. Then we must call this way

SOUTH and that EAST and that WEST.
NORTH

EAST a WEST

SQUTH
When we type CS -- which stands for CLEARSCREEN-- the turtle goes to

the center (we sometimes call that "HOME") and faces NORTH. If you

want it to face EAST you type

RT 992 >

If you want it to face NORTH again type

LEFT- 9(‘)2 or LT 9Q) A

Try some other inputs with RT and LT.

Try making the turtle draw a square. Try some other designs.

* k % * *

Let's try some inputs with RT.

s
d A

Now the turtle is facing NORTH. -

RT IQ)

d

Which way is it facing? What can we call it? Navigators and airplane
pilots would use numbers to talk about directions as well as the names
NORTH, EAST, SOUTH, WEST. They also use the word "HEADING". If you

are facing NORTH they say your heading is zero. If you face EAST they
say your heading is 90. The computer a];o understands this. If we know

how to ask it the heading of the turtle it will tell us. We ask like

this:
2PRINT HEADINQ)
10
Try:
2RT 30y
2PRINT HEADINGJ 4

40

€S
2PRINT HEADING
0

Teaching the computer a new command.

Let's start by making the turtle draw a square.

) FD 50) |
A

FD 5Q) RT 90,

RT 90 — FD 50/

FD 5Q)

RT 90¢

If we want other squares on the screen do we have to‘type in all those
commands again and again? The answer is no. We can teach the computer
to do it when we type just one command. What will the command be?

Why not SQUARE? Try giving the computer the commandSQUARE to see what
the computer does.

Here's how we teach the computer a new command.

270 SQUARE! TO is the command which means we are teaching a new
command.

by > is typed by the computer instead of? as a reminder
that you are teaching. <

Y |-

10 FD 59! You give each command a line number. Then the computer
will know which command to do first, second, third etc.
You could number the lines 1, 2, 3 etc.

>20 RT 90¢ BUT

>30 RT 90y €——— Oops! Forgot! I meant FD 50. So, no need to panic,

325 FD 50¢ * we can add a line between 20 and 30.

>40 FD 502

350 RT 9%/

360 FD 50/ :

SENDY This command tells the computer we have finished
teaching.

SQUARE DEFINED The computer says okay you've taught me SQUARE.

2
To see what you just taught type
PRINTOUT SQUARQZ or PO SQUARE,

TO SQUARE

10 FORWARD 50 Look! the computer prints out FORWARD and RIGHT
20 RIGHT 90 instead of FD and RT.

25 FORWARD 50

30 RIGHT 90

40 FD50 There appears to be a BUG!

50 RIGHT 90

60 FORWARD 50

END
?

Let's try running SQUARE anyway. So
?2SQUARE

FD50. NEEDS A MEANING
STOPPED AT LINE 40 IN SQUARE

We have given the computer a procedure or way for the turtle to draw
a square. We have run or tried out the procedure. It has a bug. We
have to fix it. We tell the computer this by typing
EDIT SQUARE or ED SQUARE
The computer prints out the greater-than sign and we merely retype
line 40.

>80 FD 50
>END
SQUARE_DEFINED

PRINTOUT SQUARE again to be sure we didn't make more "typos" (typing bugs).

Now C%Z

Try SQUARE
{ 4

Run SQUARE again. —
Notice where the turtle
heads before and after
Again it draws a square.

SQUARE ? _

And again

SQUARE

Why not give this design a name and teach it to the computer. Then you
can command the turtle to make this design by typing one word to the
computer. You can choose almost any word as the name of a procedure.
The computer will let you know if the word is no good. Anyway I'm going
to call this design WINDOW. Teach it to the computer.

Now clear the screen and try it out.

ZWINDOK)

Now
2RT QQJ >
gﬂINDOHJ >

Hmmm. What happened? Before you panic try something else.

2CS

WINDOW

7RT 45 or use any input less than 90.

ZWINDOW —

What a diffgrence! You change one little thing and the turtle seems to

behave very differently. But did it really?

Here are some ideas. You may want to make some of these designs. Or

they may suggest some other designs to you. Have fun.

